\(\frac{2018^{2018}}{2019^{2019}}\) Và B=\(\frac{2018^{2018}+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

Bài toán : So sánh A và B

\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)

+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)

                     \(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)

                      \(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)

\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)

+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)

                     \(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)

                      \(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)

+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)

     \(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)

     .....................................

     \(1=1\)

\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)

\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

1 tháng 3 2018

Ta có :  

\(B=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Vì : 

\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow\)\(\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~

1 tháng 3 2018

cảm ơn bạn nhưng mình cần hai cách

13 tháng 5 2019

Có: \(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}+1-2018+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)

\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}+2-2018+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)

Mà: \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)

\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\\ \Rightarrow A>B\)

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020

14 tháng 5 2019

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\) 

Với  :   \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\) 

Và   :   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\) 

             \(B=1-\frac{1}{2020}< 1< A\)

1 tháng 5 2018

Ta có : 

\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)

\(\Rightarrow A>B\)

Chúc bạn học tốt !!!! 

1 tháng 5 2018

Vì \(\frac{2017}{2018}>\frac{2017}{2018+2019}\)

Vì \(\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\)

22 tháng 5 2019

đặt 22018 = a ; 32019 = b ; 52020 = c

Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

\(\Rightarrow A>1>\frac{3}{4}>B\)

22 tháng 5 2019

Mình chỉ biết cách tính B thôi, đây nhé:

B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)

B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)