K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

\(A=1+4+4^2+...+4^{99}\)(1)

=>\(4A=4+4^2+4^3+...+4^{100}\)(2)

Lấy (2)-(1) ta được 

3A=4100-1

=>A=\(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}=B\)

=>A<B (đpcm)

21 tháng 4 2016

lộn 4^100/3=B/3

=>A<B/3(đpcm)

Y
18 tháng 5 2019

\(4A=4+4^2+...+4^{100}\)

\(A=1+4+4^2+..+4^{99}\)

\(\Rightarrow3A=4A-A=4^{100}-1\)

\(\Rightarrow3A< 4^{100}\)

\(\Rightarrow\frac{3A}{B}< 1\Rightarrow\frac{A}{B}< \frac{1}{3}\)

13 tháng 7 2016

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\)

31 tháng 1 2019

bạn ơi chép sai đầu bài

31 tháng 1 2019

ta có: \(A=1+4+4^2+4^3+...+4^{99}\)

\(\Leftrightarrow4A=1.4+4.4+4^2.4+4^3.4+...+4^{99}.4\)

\(\Leftrightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)

\(\Leftrightarrow4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3+...+4^{99}\right)\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow3A=B-1\)

\(\Leftrightarrow A=\frac{B-1}{3}\)

Mà:\(\frac{B-1}{3}< \frac{B}{3}\)

Nên:\(A< \frac{B}{3}\)

17 tháng 10 2016

Ta có :

A = 1+ 4 + 4 2 + 4 3 +  ... + 4 99

4A = 4 + 4 2 + 4 3 + 4 4 + ... + 4 100

4A - A = ( 4 + 4 2 + 4 3 + 4 4 + ... + 4 100 )

           -  ( 1+ 4 + 4 2 + 4 3 +  ... + 4 99  )

3 A     = 4 100 - 1

   A     = \(\frac{4^{100}-1}{3}\)

\(\frac{4^{100}-1}{3}\)< \(\frac{4^{100}}{3}\)

=> A < \(\frac{B}{3}\)

29 tháng 6 2017

Kết quả...

17 tháng 4 2020

                                                                                                                                                                                                                  

đọc tiếp...

8 tháng 4 2018

a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)

\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)

\(=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)

\(=\frac{16+4+1}{64}\)

\(=\frac{21}{64}< \frac{1}{3}\)(đpcm)

30 tháng 10 2016

4A = 4 + 42 + 43 + 44 + .. + 4100

4A - A = (4 + 42 + 43 + 44 + .. + 4100) - (1 + 4 + 42 + 43 + ... + 499)

3A = 4100 - 1 < 4100

=> 3A < B => A < B/3