Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho phan so A= (6n- 1)/3n+2
tim n thuocZ de a co gia tri nguyen
tim n thuoc Z de a co gia tri lon nhat
câu GTLN nè:
A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:
* 3n+2=-1 => 5/-1=-5
* 3n+2=1 => 5/1=5
* 3n+2=5 => 5/5=1
* 3n+2=-5 => 5/-5=-1
=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)
\(\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để \(\frac{3}{n-2}\in Z\) <=> 3 ⋮ n - 2 => n - 2 ∈ Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> n ∈ { - 1 ; 1 ; 3 ; 5 }
cho A=6n-1/3n+1(n thuoc z) hoi a tim n de A nguyen b tim n de A co gia tri nho nhat
Giải:Ta có:A=\(\frac{6n-1}{3n+1}=\frac{6n+2-3}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{3}{n+1}=2-\frac{3}{n+1}\)
a,Để A nguyên thì \(\frac{3}{n+1}\in Z\)\(\Rightarrow3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-4,-2,0,2\right\}\)
b,Để A có GTNN thì \(\frac{3}{n+1}\) lớn nhất
\(\Rightarrow n+1\) bé nhất và n+1>0
\(\Rightarrow n+1=1\Rightarrow n=0\)
Nên GTNN của A=-1
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
\(A=\frac{n+1}{n-3}\)điều kiện: n-3 khác 0\(\Rightarrow\)n khác 3
để \(A=\frac{n+1}{n-3}\)là số nguyên\(\Rightarrow\)n+1\(⋮\)n-3
\(\Rightarrow\)3(n+1)\(⋮\)n-3
\(\Rightarrow\)3n+3\(⋮\)n-3 (1)
mà n-3\(⋮\)n-3
\(\Rightarrow\)3(n-3)\(⋮\)n-3
\(\Rightarrow\)3n-9\(⋮\)n-3 (2)
từ (1)và(2)\(\Rightarrow\)(3n+3)-(3n-9)\(⋮\)n-3
3n+3-3n+9\(⋮\)n-3
12\(⋮\)n-3
n-3\(\in\)Ư12={\(\pm1,\pm2,\pm3,\pm4,\pm6,\pm12\)}
bạn tự thử nhé