K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

20 tháng 9 2019

Vì: \(a>2\Rightarrow a-2>0.\)

\(b>2\Rightarrow b-2>0.\)

\(\Rightarrow\left(a-2\right).\left(b-2\right)>0\)

\(\Leftrightarrow ab-2a-2b+4>0\)

\(\Leftrightarrow ab+4>2.\left(a+b\right)\)

Ta có: \(a.b>2.2=4.\)

\(\Rightarrow ab+ab>ab+4>2.\left(a+b\right)\)

\(\Rightarrow2ab>2.\left(a+b\right)\)

\(\Rightarrow a.b>a+b\left(đpcm\right).\)

Chúc bạn học tốt!

17 tháng 10 2017

\(\left\{{}\begin{matrix}a>b\\b>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>2\\b>2\end{matrix}\right.\)

Nên \(\left\{{}\begin{matrix}a=2+m\\b=2+n\end{matrix}\right.\)

Khi đó:

\(\left\{{}\begin{matrix}ab=\left(2+m\right)\left(2+n\right)\\a+b=2+m+2+n\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=4+2n+2m+mn\\a+b=4+m+n\end{matrix}\right.\)

Dễ thấy: \(4+2\left(m+n\right)+mn>4+m+n\)

Nên ta có đpcm

2 tháng 8 2015

Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)

=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b

=>ĐPCM

15 tháng 9 2019

Bài 1 :

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)
    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

~ Hok tốt ~

15 tháng 9 2019

1)\(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< 1\Leftrightarrow\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)

2) \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

28 tháng 8 2017

đề bài sai bn oi

28 tháng 8 2017

sai ở đâu

30 tháng 11 2018

a > 2; b > 2

=> ab > 2a (1)

a > 2; b  >2

=> ab > 2b   (2)

(1)(2) => ab + ab > 2a + 2b 

=> 2ab > 2(a + b)

=> ab > a + b

23 tháng 7 2017

Ta chia cả 2 vế a+b<a.b cho a.b

Vậy ta phải chứng minh rằng a+b<a.b đồng nghĩa với việc chứng minh (a+b)/a.b<(a.b)/(a.b)

khi và chỉ khi (a+b)/(a.b)<1

Ta phân tích (a+b)/(a.b) =a/(a.b) + b/(a.b) = 1/b+1/a 

Ta phải cm 1/b+1/a <1 mà điều này luôn đúng khi a và b lớn hơn 2

vậy ta có điều phải chứng minh