Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\Rightarrow a^2+d^2+2ad=b^2+c^2+2bc.\)
Do \(a^2+d^2=b^2+c^2\Rightarrow2ad=2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có: \(a+d=b+c\)
\(\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2.\)
\(\Rightarrow a^2+2ad+d^2=b^2+2bc+c^2\left(1\right)\)
Lại có: \(a^2+d^2=b^2+c^2\)
\(\Rightarrow2ad=2bc\) (bớt cả hai vế của đẳng thức (1) đi \(a^2+d^2\) và \(b^2+c^2\))
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Vậy 4 số \(a,b,c,d\) có thể lập thành 1 tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}.\)
Chúc bạn học tốt!
[ab(ab-2cd)+c2 d2 ] [ab(ab-2)+2(ab+1)=0<=>(a2b2-2abcd+c2d2)(a2b2-2ab+2ab+2)=0
<=>[(a2b2 - abcd)+(-abcd+c2d2)](a2b2+2)=0<=>ab(ab-cd)-cd(ab-cd)=0(vì a2b2 > 0)
<=>(ab-cd)2=0<=>ab=cd
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)