Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.b-a.c+b.c-c2=-1
a.b-a.c+b.c-c.c=-1
a.(b-c)+c.(b-c)=-1
(b-c).(a+c)=-1
Mà a;b;c\(\in\)Z
=>b-c=-1;a+c=1
b=-1+c;a=1-c
=>a đối b
Hoặc b-c=1;a+c=-1
b=1+c;a=-1-c
=>a đối b
=>a;b đối nhau khi a.b-a.c+b.c-c2=-1
Chúc bn học tốt
\(ab-ac+bc-c^2=-1\)\(\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
mà \(1+\left(-1\right)=0\)\(\Rightarrow\left(a+c\right)+\left(b-c\right)=0\)
\(\Leftrightarrow a+c+b-c=0\)\(\Leftrightarrow a+b=0\)
Vậy a và b là 2 số đối nhau
=> a.(b-c) + c.(b-c)=-1
=> (a+c).(b-c) = -1
Mà a,b,c thuộc Z => a+c và b-c đều thuộc Z => a+c=1;b-c=-1 hoặc a+c=-1;b-c=1
=> a=-b
=> ĐPCM
k mk nha
=>a(b-c)+c(b-c)=-1=>(b-c)(a+c)=1=>b-c=-1.a+c=1 công theo từng vế ta đc a+b=0=> a=-b=> a và b đối nhau
tương tự vs b-c=1;a+c=-1
Đề bạn sai nhé mk chữa luôn
k cho tớ nha
chúc bạn may mắn
ai thì k cho mình lên top 10 nha
Thay \(b^2=ac\)vào biểu thức ta được:
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)