Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(a+b\le1\Leftrightarrow\hept{\begin{cases}a\le1-b\\b\le1-a\end{cases}}\Leftrightarrow\hept{\begin{cases}1+a\le2-b\\1+b\le2-a\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b}\ge\frac{a}{2-a}\\\frac{b}{1+a}\ge\frac{b}{2-b}\end{cases}}\Rightarrow\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{a}{2-a}+\frac{b}{2-b}\)
\(\Rightarrow S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\ge\frac{a}{2-a}+\frac{b}{2-b}+\frac{1}{a+b}\)
\(=\frac{2}{2-a}-1+\frac{2}{2-b}-1+\frac{1}{a+b}=\frac{2}{2-a}+\frac{2}{2-b}+\frac{1}{a+b}-2\)
\(=2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\)
Áp dụng bất đẳng thức sau: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{4-\left(a+b\right)+2\left(a+b\right)}=\frac{9}{4+a+b}\)
Lại có: \(a+b\le1\Rightarrow4+a+b\le5\Rightarrow\frac{9}{4+a+b}\ge\frac{9}{5}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{5}\Leftrightarrow2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\ge\frac{8}{5}\)
\(\Rightarrow S\ge\frac{8}{5}.\)
Vậy \(Min_S=\frac{8}{5}.\)Dấu "=" xảy ra khi \(a=b=\frac{2}{5}.\)
\(S=\frac{a^2}{a+ab}+\frac{b^2}{b+ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+2ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+\frac{\left(a+b\right)^2}{2}}+\frac{1}{a+b}\ge\frac{1}{1+\frac{1}{2}}+1=\frac{5}{3}\)
\(\Rightarrow S_{min}=\frac{5}{3}\) khi \(a=b=\frac{1}{2}\)
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)
\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)
\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
Chúc bạn học tốt !!!
Áp dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu = xảy ra <=>x=y=1/2
^_^
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)
\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)
\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
\(\Rightarrow M\le\frac{1}{3}\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)
Vậy GTLN của M là 1/3
Bài 1
Cho a , b , c > 0 . CM : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}\left(1\right)\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)\le\frac{a\left(a+b\right)\left(b+c\right)}{b}+\frac{b\left(a+b\right)\left(b+c\right)}{c}+\frac{c\left(a+b\right)\left(b+c\right)}{a}\)
\(=\frac{a^2c}{b}+a^2+ab+ac+\frac{b^2\left(a+b\right)}{c}+b^2+ab+c^2+bc+\frac{cb\left(b+c\right)}{a}\)
Mặt khác : \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)=a^2+ac+c^2+3b^2+3ab+3bc\)
Do đó ta cần chứng minh :
\(\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}\ge2b^2+2bc+ab\left(2\right)\)
\(VT=\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}=\frac{1}{2}\left(\frac{a^2c}{b}+\frac{b^3}{c}\right)+\frac{1}{2}\left(\frac{a^2c}{b}+\frac{c^2b}{a}\right)+\frac{1}{2}\left(\frac{b^3}{c}+\frac{c^2b}{a}\right)+b^2\left(\frac{c}{a}+\frac{a}{c}\right)\)
\(\ge ab+\sqrt{ac^3}+\sqrt{\frac{b^4c}{a}}+2b^2\ge ab+2bc+2b^2=VP\)
Dấu " = " xảy ra khi a=b=c
Bài 2 :
Vì x , y , z > 0 ta có :
Áp dụng BĐT Cô - si đối với 2 số dương \(\frac{x^2}{y+z}\) và \(\frac{y+z}{4}\)
ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\left(1\right)\) .
Tương tự ta cũng có :
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\left(2\right);\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\left(3\right)\)
Cộng theo vế (1) , (2) và (3) ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\Rightarrow P\ge\left(x+xy+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Vậy \(P=1\Leftrightarrow x=y=z=\frac{2}{3}\)
\(a+\frac{1}{b}\le1=>ab+1\le b\)
\(b\le ab+1\ge2\sqrt{ab}=>\sqrt{b}\ge2\sqrt{a}=>\frac{b}{a}\ge4\)
\(T=\frac{ab}{a^2+b^2}=\frac{1}{\frac{a}{b}+\frac{b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{15b}{16a}}\)
áp dụng cô si
\(\frac{a}{b}+\frac{b}{16a}\ge2\sqrt{\frac{ab}{16ab}}=\frac{1}{2}=>T\le\frac{1}{\frac{1}{2}+\frac{15}{16}.4}=\frac{4}{17}\)
\(=>MaxT=\frac{4}{17}\)
dấu = xảy ra khi
\(b=4a;\frac{a}{b}=\frac{b}{16a};ab=1\)
\(=>\hept{\begin{cases}4a^2=1\\b=4a\end{cases}=>\hept{\begin{cases}a=\frac{1}{2}\\b=2\end{cases}}}\)