Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=a2b+ab2-\(\frac{\left(a+b\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{\left(4ab\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{16a^2b^2}{6a^2b^2}\)+\(\frac{2ab}{6a^2b^2}\)
=a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 3 số dương, ta được:
P==a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)\(\ge\)3.\(\sqrt[3]{a^3b^3\frac{8}{3}}\)+\(\frac{1}{3ab}\)=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số dương, ta được:
P=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)\(\ge\)2.\(\sqrt{\frac{6}{\sqrt[3]{3}}.ab.\frac{1}{3ab}}\)=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)
Vậy MinP=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)
\(-\frac{8}{3}\)có phải là số không âm đâu mà áp dụng BĐT Cosi
Áp dụng BĐT AM-GM ta có:
\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)
\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)
Áp dụng BĐT Cauchy-Schwarz lại có:
\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:
\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)
Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2
GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)
Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1
\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)
Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)
Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3
Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)
\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)
\(=\sqrt{3}\text{}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)
Ta có: (x−y)2=(x+y)2−4xy=2012−4xy(x−y)2=(x+y)2−4xy=2012−4xy
Như thế, để tìm GTNN,GTLN của xyxy, tương đương với việc ta tìm GTLN,GTNN của A=(x−y)2=(|x−y|)2A=(x−y)2=(|x−y|)2 hay cần tìm GTLN,GTNN của |x−y||x−y|
Không mất tính tổng quát giả sử: x≥yx≥y thì: x≥101x≥101; y≤100y≤100
Khi đó: |x−y|=x−y=x+y−2y=201−2y|x−y|=x−y=x+y−2y=201−2y
Ta có: 1≤y≤1001≤y≤100 nên: 1≤|x−y|=201−2y≤1991≤|x−y|=201−2y≤199
Lập luận đi ngược lại thì tìm được các cực trị
Ta có: \(4ab\le2a^2+2b^2\)
=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)
=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)
Chứng minh tương tự
=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)
Áp dụng bđt bunhia dạng phân thức
=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)
=> \(MinT=1\)xảy ra khi a=b=c=5/3
từ từ hồi trả lời cho câu này củng hơi khó cần thời gian suy nghĩ