K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Ta có:

\(a^4+b^4\ge a^3+b^3\)  \(\left(1\right)\)

\(\Leftrightarrow\)  \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)  (vì  \(a+b=2\))

\(\Leftrightarrow\)  \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow\)  \(a^4-a^3b-ab^3+b^4\ge0\)

\(\Leftrightarrow\)  \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\)  \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\)  \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)  \(\left(2\right)\)

Bất đẳng thức  \(\left(2\right)\)  luôn đúng (do  \(\left(a-b\right)^2\ge0\)  và  \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) ), mà các phép biến đổi trên tương đương nên bất đẳng thức \(\left(1\right)\)  được chứng minh. 

Đẳng thức trên xảy ra  khi và chỉ khi  \(a=b\)

28 tháng 6 2016

BĐT svacxo là j vậy? Cho mk dạng tổng quát đc ko?

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

NV
29 tháng 3 2022

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

30 tháng 3 2022

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

25 tháng 4 2016

tớ thấy dấu = xảy ra nó có chút vấn đề cậu ạ

25 tháng 4 2016

dấu bằng khi a=b=c=2 là đúng

4 tháng 12 2017

giả sử a(1-b),b(1-c),c(1-a) >1/4

=> a(1-a)b(b-1)c(c-1)>1/4^3

ma a(1-a)=a-a^2=1/4- (a-1/2)^2<=1/4

tuong tu....

=> a(1-a)b(b-1)c(c-1)=<1/4^3(trai voi gia su)

Vay trong 3 h a(1-b),b(1-c),c(1-a) co it nhat 1 so < 1/4

4 tháng 12 2017

 Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1 

12 tháng 6 2020

Bài làm:

Ta có: \(a+b^2+c^3=\left(a+\frac{1}{a}\right)+\left(b^2+\frac{1}{b}+\frac{1}{b}\right)+\left(c^3+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)-\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)

\(\ge2.1+3.1+4.1-6=3\)

Dấu "=" <=> \(\hept{\begin{cases}a^2=1\\b^3=1\\c^4=1\end{cases}\Rightarrow a=b=c=1}\)

Học tốt!!!!