Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Cần sửa lại thành \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
Ta có : \(a^2+b^2+c^2-3=2\left(a+b+c\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c=1\)
2. Cần sửa lại thành : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\) \(\Leftrightarrow a=b=c\)
3. Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{1}{2}\)\(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Lại có : \(1=\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2+b^2+c^2\right)=1-2.\frac{1}{4}=\frac{1}{2}\)
tài năng toán học hoàng lê bảo ngọc,tui công nhận bn 3 lần/ngày
Có: \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+ac+bc\right)\)
Thay: \(a^2+b^2+c^2=1\)
\(\Rightarrow-2\left(ab+ac+bc\right)=1\Rightarrow ab+ac+bc=-\frac{1}{2}\)
Lại có: \(a^2+b^2+c^2=1\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)
Mà: \(2a^2b^2+2a^2c^2+2b^2c^2=2\left(a^2b^2+a^2c^2+b^2c^2\right)=2\left(ab+ac+bc\right)^2=2.\left(-\frac{1}{2}\right)^2=\frac{1}{2}\)
\(\Rightarrow a^4+b^4+c^4=1-\left(2a^2b^2+2a^2c^2+2b^2c^2\right)=1-2\left(a^2b^2+a^2c^2+b^2c^2\right)=1-\frac{1}{2}=\frac{1}{2}\)
Vậy: \(a^4+b^4+c^4=\frac{1}{2}\)
Ta có \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
+) Nếu \(a^2+b^2+c^2=2\) thì \(ab+bc+ac=\frac{-2}{2}=-1\Leftrightarrow\left(ab+bc+ac\right)^2=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)
Ta có : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow a^4+b^4+c^2+2=4\Leftrightarrow a^4+b^4+c^4=2\)
+ Nếu \(a^2+b^2+c^2=1\) làm tương tự
a+b+c=0
=> (a+b+c)2=0
=> a2+b2+c2+2ab+2bc+2ac=0
=> 2(ab+bc+ac)=-1
=> ab+bc+ac=\(\dfrac{-1}{2}\)
=> (ab+bc+ac)2=\(\dfrac{1}{4}\)
=> a2b2+b2c2+a2c2+2ab2c+2abc2+2a2bc=\(\dfrac{1}{4}\)
=> a2b2+b2c2+a2c2+2abc(a+b+c)=\(\dfrac{1}{4}\)
=> a2b2+b2c2+a2c2=\(\dfrac{1}{4}\)
Ta có: a2+b2+c2=1
=> (a2+b2+c2)2=1
=> a4+b4+c4+2a2b2+2b2c2+2a2c2=1
=> a4+b4+c4=4
1,cho a+b - c = 0
a2 + b2 + c2 = 10
tính a4 +b4 +c4
2, cho a- b- c =0
a2 + b2 + c2 = 16
tính a4 + b4+ c4
a: \(A=\left(100^2-1\right)\left(100^4+100^2+1\right)=100^6-1\)
b: \(B=\left(\dfrac{1}{5}a-b\right)\left(\dfrac{1}{25}a^2+\dfrac{1}{5}ab+b^2\right)=\left(\dfrac{1}{5}a\right)^3-b^3=\dfrac{1}{125}a^3-b^3\)
c: \(C=\left(2+a\right)\left(4-2a+a^2\right)\left(2-a\right)\left(4+2a+a^2\right)\)
\(=\left(8+a^3\right)\left(8-a^3\right)=64-a^6\)
\(a^2+b^2+c^2=\left(a+b+c\right)^2-2ab-2bc-2ca=0-2\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow\)\(ab+bc+ca=\frac{-1}{2}\)
\(\Leftrightarrow\)\(\left(ab+bc+ca\right)^2=\left(\frac{-1}{2}\right)^2\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=\frac{1}{4}\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\) ( do \(a+b+c=0\))
\(\Rightarrow\)\(M=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(M=1^2-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
...