Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a+b+c=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Đặt \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\) ta có :
\(P=\left(\frac{b}{b}+\frac{a}{b}\right)\left(\frac{c}{c}+\frac{b}{c}\right)\left(\frac{a}{a}+\frac{c}{a}\right)\)
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)
\(P=\frac{-abc}{abc}\)
\(P=-1\)
Vậy \(P=-1\)
Chúc bạn học tốt ~
a+c=2b
=>d(a+c)=2bd
=>ad+cd=2bd
Mà 2bd=cb+cd
=>ad+cd=cb+cd
=>ad=cb
=>a/b=c/d
a+c=2b
=>d(a+c)=2bd
=>ad+cd=2bd
Mà 2bd=cb+cd
=>ad+cd=cb+cd
=>ad=cb
=>a/b=c/d
Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+c+b};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
=> M>1 (1)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}=2\)
=> M<2 (2)
Từ (1)(2) => 1<M<2 => M không là số nguyên (đpcm)
Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1 (1)
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{a+b}{a+b+c}\\\frac{c}{c+a}< \frac{b+c}{a+b+c}\end{cases}}\)
\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M > 2 (2)
Từ (1) và (2)
=> 1 < M < 2
=> M không phải là số nguyên