Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.
\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)
\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
Lời giải:
Ta có:
\(2P=\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}=1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\)
\(2P=3-\left(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\geq \frac{(a+b+c)^2}{a^2+b^2+c^2+6}=\frac{(a+b+c)^2}{a^2+b^2+c^2+2(ab+bc+ac)}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)
Do đó: \(2P\leq 3-1=2\Rightarrow P\leq 1\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Bài 3:
Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)
\(=2+2+2=6\)
Dấu " = " khi x = y = z = 1
Vậy...
3. Với x,y,z>0 áp dụng BĐT Cauchy ta có
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)
\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)
1. Với a=b=c=0, ta thấy BĐT trên đúng
Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương
\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)
\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)
\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)
Cộng (1), (2), (3) vế theo vế:
\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)
Do đó BĐT trên đúng \(\forall a,b,c\ge0\)
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
Bài 1:
Với $a=0$ hoặc $b=0$ thì ta luôn có \(ab=a^ab^b\)
Với $a\neq 0; b\neq 0$ , tức là \(a,b\in (0;1]\)
Ta có: \(a^a-a=a(a^{a-1}-1)=a(\frac{1}{a^{1-a}}-1)=\frac{a}{a^{1-a}}(1-a^{1-a})\)
Với \(0\leq a\leq 1; 1-a\geq 0\Rightarrow a^{1-a}\leq 1\)
\(\Rightarrow 1-a^{1-a}\geq 0\)
\(\Rightarrow a^a-a=\frac{a}{a^{1-a}}(1-a^{1-a})\geq 0\)
\(\Rightarrow a^a\geq a\)
Tương tự: \(b^b\geq b\)
\(\Rightarrow a^ab^b\geq ab\) (đpcm)
Bài 2:
Ta có :\(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\geq 3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\)
\(\Leftrightarrow \frac{1-3a}{3^a}+\frac{1-3b}{3^b}+\frac{1-3c}{3^c}\geq 0\)
\(\Leftrightarrow \frac{b+c-2a}{3^a}+\frac{a+c-2b}{3^b}+\frac{a+b-2c}{3^c}\geq 0\) (do $a+b+c=1$)
\(\Leftrightarrow (a-b)\left(\frac{1}{3^b}-\frac{1}{3^a}\right)+(b-c)\left(\frac{1}{3^c}-\frac{1}{3^b}\right)+(c-a)\left(\frac{1}{3^a}-\frac{1}{3^c}\right)\geq 0\)
\(\Leftrightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}+\frac{(b-c)(3^b-3^c)}{3^{b+c}}+\frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0(*)\)
Ta thấy, với mọi \(a\geq b\Rightarrow 3^a\geq 3^b; a\leq b\Rightarrow 3^a\leq 3^b\)
Tức là \(a-b; 3^a-3^b\) luôn cùng dấu
\(\Rightarrow (a-b)(3^a-3^b)\geq 0\). Kết hợp với \(3^{a+b}>0, \forall a,b\)
\(\Rightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}\geq 0\)
Tương tự: \(\frac{(b-c)(3^b-3^c)}{3^{b+c}}\geq 0; \frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0\)
Do đó $(*)$ đúng, ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$