Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả thiết ngứa mắt vc , let's biến đổi chút
\(GT\Leftrightarrow\frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\). Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b};\frac{1-c}{c}\right)\rightarrow\left(x;y;z\right)\)
thì \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)
nên bài toán đã cho trở thành \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\left(xyz=1\right)\)
để ý rằng \(VT\ge\frac{1}{2\left(x^2+1\right)}+\frac{1}{2\left(y^2+1\right)}+\frac{1}{2\left(z^2+1\right)}\)
nên chỉ cần chứng minh \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{2}\left(xyz=1\right)\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge a+b+c+3-\frac{a+b+c+ab+bc+ac}{2}\)
\(\ge a+b+c+3-\frac{a+b+c+\frac{\left(a+b+c\right)^2}{3}}{2}\)
\(\ge3+3-\frac{3+\frac{3^2}{3}}{2}=3\)
\("="\Leftrightarrow a=b=c=1\)
cho 3 số dương a,b,c thỏa mãn abc = 1 và a+b+c > 1/a + 1/b + 1/. chứng minh rằng (a-1)(b-1)(c-1) > 0
bạn xem lại cái đề được không
với a=1/2; b=7/10; c=13/10 thì bất đẳng thức trên không đúng
Sửa đề: a+b+c>=3
Hay 6<= 2(a+b+c)
Theo BĐT Cauchy-Schwarz dạng Engel
\(\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\ge\frac{3}{3}=1\)
p/s: ko chắc lắm bạn ktra giúp mình nha
Mình viết lại đề cho dễ nhìn:
Cho a;b;c>0 thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}\)
Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{1}{abc}\)