K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{\left(a+b+c\right)}=\frac{9}{1}=9\\ \)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Hết => không điểm => DBNT 

22 tháng 4 2017

Bài làm của bạn kia chưa chặt chẽ! Mà cho mình hỏi DBNT là gì vậy? :)

Giải:

Áp dụng BĐT Cô si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế 2 BĐT trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) (Đpcm)

7 tháng 4 2019

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D

29 tháng 8 2017

sai de thi phai

13 tháng 10 2020

ĐK:\(a+b+c\le1|a,b,c>0\)

Chỉ có TH \(a=b=c=\frac{1}{3}\)\(\Rightarrow TH:a+b+c=1\)

\(\Rightarrow\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}+\frac{1}{\left(\frac{1}{3}\right)^2+2.\frac{1}{3}.\frac{1}{3}}\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2+2\left(\frac{1}{3}\right)^2}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2\left(2+1\right)}3\ge9\)\(=\frac{1}{\left(\frac{1}{3}\right)^2.3}3\ge9\)\(=\frac{1}{\frac{1}{3}.\frac{1}{3}.3}3\ge9\)\(=\frac{1}{\frac{1}{3}}3\ge9\)\(=\frac{3}{\frac{1}{3}}\ge9\)\(=3:1:3\ge9\)\(=1\ge9\)( loại )

Vậy không thể CMR \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ba}\ge9\).

27 tháng 7 2019

#)Góp ý :

dao xuan tung đề lỗi ak bn ?

a) vô lí vì \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
 

27 tháng 7 2019

Ko phải đâu hai đề khác nhau nha

25 tháng 1 2018

Đề phải là : cmr : (a+b+c).(1/a + 1/b + 1/c) >= 9

Áp dụng bđt cosi cho lần lượt 3 số a,b,c > 0 và 3 số 1/a ; 1/b ; 1/c > 0 thì :

(a+b+c)(1/a + 1/b + 1/c)

>= \(3\sqrt[3]{a.b.c}\).  \(3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\) =  \(3\sqrt[3]{abc}\).  \(3\sqrt[3]{\frac{1}{abc}}\)=  \(9\sqrt[3]{abc.\frac{1}{abc}}\)=  9

=> đpcm

Dấu "=" xảy ra <=> a=b=c > 0

Tk mk nha

26 tháng 1 2018

Bạn giải là ý b), ý a) vẫn đúng đề

5 tháng 3 2020

P/s: Bài toán này khá hay đó !!

Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)

Mà : \(a,b,c>0\)

\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)

+) Xét : \(a^2c+a^2b=b^2c+ab^2\)

\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)

\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

+) Xét \(b^2c+ab^2=c^2b+c^2a\)

\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)

\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)

\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)

( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )

Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)

6 tháng 3 2020

 Thx nha !

15 tháng 2 2017

\(\frac{a+c}{b+c}>\frac{a}{b}\)

\(\Leftrightarrow b\left(a+c\right)>a\left(b+c\right)\)

\(\Leftrightarrow ab+bc>ab+ac\)

\(\Leftrightarrow bc>ac\)

\(\Leftrightarrow b>a\) 

\(\Rightarrow\frac{a}{b}< 1\) (luôn đúng)

28 tháng 7 2019

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (do a,b,c >0)

Ta có đpcm

28 tháng 7 2019

may hoc thay nghia a

9 tháng 1 2017

Bài 2)

Ta có \(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) (2)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

10 tháng 1 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)

Đặt \(B=2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)

\(=\left(2013-2013\right)\left(\frac{2013}{2}+1\right)+...+\left(\frac{1}{2014}+1\right)\)

\(=0+\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}\)

\(=2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

Thay B vào A ta được:

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)

\(=\frac{1}{2015}\)

Vậy \(A=\frac{1}{2015}\)