K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}< 1\)(đpcm)

*bài này hình như sai đề nhé, bn xem lại hộ mik.

27 tháng 7 2019

đề là >1 mà

24 tháng 11 2019

đề bài?

24 tháng 11 2019

tìm \(p=\frac{a^{10}.b^5.c^{2019}}{b^{2018}}\)

1 tháng 12 2019

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\)

Thay a = b = c vào P

\(\Rightarrow P=\frac{b^{10}.b^5.b^{2019}}{b^{2018}}=\frac{b^{2034}}{b^{2018}}=b^{16}\)

14 tháng 10 2018

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2007.\frac{1}{90}\)

\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{223}{10}\)

\(\Leftrightarrow\)\(1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}=\frac{223}{10}\)

\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{193}{10}\)

Vậy \(S=\frac{193}{10}\)

Chúc bạn học tốt ~ 

14 tháng 10 2018

Cách 1: Nhân cả hai vế của đẳng thức cho \(a+b+c\)ta được:

\(\frac{a+b+c}{a+b}=\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{90}\)

\(\Rightarrow a+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=\frac{2007}{90}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2007}{90}-3=22,3-3=19,3\)

15 tháng 11 2018

Câu hỏi là gì 

15 tháng 11 2018

mk ghi thiếu đề m.n thông cảm 

Chứng minh rằng x<y thì x<z<y

      ~~~~~nhe bn~~~~~

30 tháng 9 2019

Chúc em may mắn :Đ

30 tháng 9 2019

Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> \(a+b=b+c\Rightarrow a=c\)

7 tháng 8 2015

bài 1

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)

bài 2

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)

7 tháng 8 2015

bài 1:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> \(\frac{a}{b}=1\)  

  \(\frac{b}{c}=1\)  

  \(\frac{c}{a}=1\)

=> a=b   (1)

b=c    (2)

c=a     (3)

=> a=b=c

24 tháng 3 2019

gt: a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0    

24 tháng 3 2019

Ta có : Nếu : \(a+b+c=0\) thì từ giả thiết, suy ra :

\(a+b=-c;b+c=-a;a+c=-b\)

Khi đó : \(1=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-3\)( vô lý )

\(\Rightarrow a+b+c\ne0\)

Nhân cả hai vế của : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)với : \(a+b+c\ne0\)

ta được : \(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)