Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\)
Thay a = b = c vào P
\(\Rightarrow P=\frac{b^{10}.b^5.b^{2019}}{b^{2018}}=\frac{b^{2034}}{b^{2018}}=b^{16}\)
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2007.\frac{1}{90}\)
\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{223}{10}\)
\(\Leftrightarrow\)\(1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}=\frac{223}{10}\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{193}{10}\)
Vậy \(S=\frac{193}{10}\)
Chúc bạn học tốt ~
Cách 1: Nhân cả hai vế của đẳng thức cho \(a+b+c\)ta được:
\(\frac{a+b+c}{a+b}=\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{90}\)
\(\Rightarrow a+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=\frac{2007}{90}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2007}{90}-3=22,3-3=19,3\)
Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> \(a+b=b+c\Rightarrow a=c\)
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c
gt: a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0
Ta có : Nếu : \(a+b+c=0\) thì từ giả thiết, suy ra :
\(a+b=-c;b+c=-a;a+c=-b\)
Khi đó : \(1=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-3\)( vô lý )
\(\Rightarrow a+b+c\ne0\)
Nhân cả hai vế của : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)với : \(a+b+c\ne0\)
ta được : \(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)
\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}< 1\)(đpcm)
*bài này hình như sai đề nhé, bn xem lại hộ mik.
đề là >1 mà