Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)
Xảy ra khi \(a=b=c=\frac{1}{2}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)
\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)
c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)
Khi a=b
Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)
(a+b+c)(1/a+1/b+1/c)>=9
=>1+1+1+a/b+a/c+b/a+b/c+c/a+c/b>=9
=>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6
Áp dụng bất đẳng thức cauchy cho a/b và b/a ;b/c và c/b ; a/c và c/a
=>a/b+b/a>=2 (1)
a/c+c/a>=2 (2)
b/c+c/b>=2 (3)
Từ (1);(2) và (3) =>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6
Vậy (a+b+c)(1/a+1/b+1/c)>=9
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ