K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(a=b=c=\frac{1}{2}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)

\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)

Khi a=b

17 tháng 10 2016

Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)(Đpcm)

17 tháng 7 2015

(a+b+c)(1/a+1/b+1/c)>=9

=>1+1+1+a/b+a/c+b/a+b/c+c/a+c/b>=9

=>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6

Áp dụng bất đẳng thức cauchy cho a/b và b/a  ;b/c và c/b ; a/c và c/a

=>a/b+b/a>=2 (1)

    a/c+c/a>=2 (2)

    b/c+c/b>=2 (3)

Từ (1);(2) và (3) =>(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=6

Vậy (a+b+c)(1/a+1/b+1/c)>=9

 

7 tháng 9 2018

cô si 3 sô a+b+c>= căn bậc 3 abc tg tự co 1/a + 1/b +1/c >= căn bậc 3 1/abc nhân vào co dpcm

6 tháng 9 2016

a)\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a+b-2\sqrt{ab}\ge0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x

->Đpcm

2 phần kia mai tui lm nốt cho h đi ngủ

2 tháng 1 2018

post ít một thôi