Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
xin lỗi tớ làm nhầm của cậu là số tự nhiên mà tớ lại làm thành số nguyên dương xin lỗi nhé lúc nào tớ làm lại cho
Bài 1:
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
Ta có: a+b+c+d-(a+b+c+d) = a(a-1)+b(b-1)+c(c-1)+d(d-1) Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp => a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2 => a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2 Hay a+b+c+d-(a+b+c+d) chia hết cho 2 <=> 2( a+b) - (a+b+c+d) chia hết cho 2 (Vì a+b=c+d) Vì 2( a+b) chia hết cho 2, a+b+c+d-(a+b+c+d) chia hết cho 2 => a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương) Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
Ta có:
a^2+b^2=c^2+d^2 => a^2+b^2+c^2+d^2=2.(a^2+b^2)
=>a^2+b^2+c^2+d^2 chia hết cho 2 (1)
Lại có: a^2+b^2+c^2+d^2 - (a+b+c+d) = (a^2-a) + (b^2-b) + (c^2-c) + (d^2 - d)
= a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1)
Do a.(a-1), b.(b-1), c,(c-1), d.(d-1) là các tích của 2 Số liên tiếp
=> 4 tích a.(a-1), b.(b-1), c,(c-1), d.(d-1) đều chia hết cho 2
=>a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1) chia hết cho 2 <=> a^2+b^2+c^2+d^2 - (a+b+c+d) chia hết cho 2 (2)
Từ (1) và (2) có: a+b+c+d chia hết cho 2
Mà a,b,c,d là các số nguyên dương => a+b+c+d >2
Vậy a+b+c+d là hợp số
Ta có: a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d)
= a(a-1)+b(b-1)+c(c-1)+d(d-1)
Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp
=> a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2
=> a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2
Hay a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
<=> 2( a\(^2\)+b\(^2\)) - (a+b+c+d) chia hết cho 2 (Vì a\(^2\)+b\(^2\)=c\(^2\)+d\(^2\))
Vì 2( a\(^2\)+b\(^2\)) chia hết cho 2, a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
=> a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn
Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương)
Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Lớp 6 khó vậy sao?
ab=cd (*)
a=b=c=d=1 => A=4=2.2 đúng
a=[c,d]
b=[c,d]
a,b,c,d, vai trò như nhau
g/s a=c; b=d
A=2a^2+2b^2 =2.(a^2+b^2) => A hợp số
với a,b,c,d >1, và a,b,c,d khác nhau
ta có
đảm bảo (*)
( không tồn tại ab=cd khác nhau mà nguyên tố)
g/s a và c có ước lớn nhất p
ta có a=x.p và c=y.p ( do p lớn nhất => (x,y)=1)(**)
từ ab=cd=> x.p.b=y.p.d
từ (**)=> b=y.q và d=x.q
thay hết vào A
A=x^n .p^n+y^n.q^n^n+y^n.p^n+x^n.q^n =x^n(p^n+q^n)+y^n(p^n+q^n)=(x^n+y^n)(p^n+q^n)
A=B.C --> dpcm
Ta có: \(ab=cd\Leftrightarrow\frac{a}{c}=\frac{d}{b}\)
Đặt \(\frac{a}{c}=\frac{d}{b}=k\left(k\inℕ\right)\)
Ta xét 2 TH sau:
Nếu k = 1 => \(\hept{\begin{cases}a=c\\b=d\end{cases}}\) \(\Rightarrow A=a^n+b^n+c^n+d^n=2\left(a^n+b^n\right)\) chia hết cho 2 và lớn hơn 2
=> A là hợp số
Nếu k khác 1 thì ta có: \(\hept{\begin{cases}a=ck\\d=bk\end{cases}\left(k\inℕ^∗\right)}\)
Thay vào: \(A=a^n+b^n+c^n+d^n=\left(ck\right)^n+b^n+c^n+\left(bk\right)^n\)
\(=c^n\left(k^n+1\right)+b^n\left(k^n+1\right)=\left(b^n+c^n\right)\left(k^n+1\right)\) là hợp số
=> đpcm
nè, mi chơi ki kiểu mất dạy nha.tao bái mi làm sư phụ
xét biểu thức :
A = ( a2 - a ) + ( b2 - b ) + ( c2 - c ) + ( d2 - d )
Ta thấy A chẵn nên a2 + b2 + c2 + d2 - ( a + b + c + d ) là số chẵn
từ đề bài a2 + c2 = b2 + d2 nên a2 + c2 + b2 + d2 nên a + b + c + d chẵn
Mà tổng này > 2 nên là hợp số