K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

Ta có : \((\frac{a-b}{c-d})^4=\frac{a^4+b^4}{c^4+d^4}\)

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có : 

 \(+>\)Xét \((\frac{a-b}{c-d})^4=(\frac{bk-b}{dk-d})^4=(\frac{(k-1)b}{(k-1)d})^4=\frac{b^4}{d^4}\)

Tương tự như \(\frac{a^4+b^4}{c^4+d^4}\)

Chúc bạn  học tốt

28 tháng 8 2023

Áp dụng công thức tỉ lệ phân số ta có : 

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)

29 tháng 11 2019

Em kiểm tra lại đề bài nhé! Tham khảo link:

 Câu hỏi của Phan Thúy Vy - Toán lớp 7 - Học toán với OnlineMath

30 tháng 12 2017

giờ mình giải cho bạn luôn đc ko, bạn có cần nữa ko để mình biết mình giải cho
 

30 tháng 12 2017
  • xét tam giác BAI và DAI
    ai cạnh chung
    bai= dai ( ai phân giác BAC)
    ab=ad ( gt )
    => tam giác bai= dai ( C.G.C)
    =>bi= di ( C.C.T.Ư )
    B) Tam giác bai = dai
    =>iba = ida ( c.g.t.ư)
     ta có :
    góc abi+ ibe = 180 ( 2 GÓC KỀ BÙ )
    ADI+ IDC= 180 ( 2 GÓC KỀ BÙ )
    Mà ABI = adi ( CMT)
    = > ibe = idc
    xét tam giác ibe và tam giác idc
    ib= id (GT)
     IBE= IDC (CMT)
    BIE= DIC ( 2 góc đối đỉnh)
    => Tam giác ibe= idc ( g.c.g)
    C) ta có bde= dec ( 2 góc sole trong)
    xét tam giác bde và dec
    be= dc ( TAM GIÁC BEI= DIC)
    de chung
    bde = dec (cmt)
    => tam giác bde = ced (c.g.c)
    => deb= cde (c.g,t.ư )
    MÀ  góc deb và cde là 2 góc ở vị trí sole trong nên 
    => bd song song ec

    TỰ VẼ HÌNH
    NHỚ K CHO MÌNH NHA MÌNH CAMON, CÓ GÌ CHƯA HIỂU THÌ VÀO NHẮN TIN
16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm