K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

#)Giải :

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\left(1\right)\)

Lại có : \(\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a}{c}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\left(\frac{a+b}{c+d}\right)^{2019}=\frac{\left(a+b\right)^{2019}}{\left(c+d\right)^{2019}}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b\right)^{2019}}{\left(c+d\right)^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\left(đpcm\right)\)

12 tháng 8 2019

ko bieets banj oi

5 tháng 11 2019

                                                            Bài giải

* Từ \(\frac{a}{b}=\frac{c}{d}\text{ }\Rightarrow\text{ }\frac{a}{c}=\frac{b}{d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\text{ ( * ) }\)

* Từ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{\left(a-b\right)^{2019}}{\left(c-d\right)^{2019}}\left(\text{**}\right)\)

* Từ \(\left(\text{*}\right),\left(\text{**}\right)\Rightarrow\text{ ĐPCM}\)

4 tháng 11 2018

Cứu mình với 9:00 sáng nay mình nộp bài rùikhocroi

17 tháng 8 2021

bạn ơi bạn có câu trả lời chưa, cho mik xin vs

 

NV
29 tháng 10 2019

- Nếu \(a=c=0\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\frac{b^{2019}}{d^{2019}}\)

\(\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}=\frac{-b^{2019}}{-d^{2019}}=\frac{b^{2019}}{d^{2019}}\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)

- Nếu \(a;c\ne0\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{2a^{2019}}{2c^{2019}}=\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a-c}{b-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)

29 tháng 10 2019

Này Nguyễn Việt Lâm, mk thấy cái trường hợp a;c\(\ne\)0 nó cứ làm sao sao ấy.Bn thử kiểm tra lại xem

21 tháng 12 2019

Sửa đề chút:

-Cho tỉ lệ thức

-Yêu cầu CM tỉ lệ thức kia

22 tháng 12 2019

Đặt  \(\frac{a}{b}=\frac{c}{d}=k\)

 \(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(bk\right)^{2019}+\left(dk\right)^{2019}}{b^{2019}+d^{2019}}=\frac{b^{2019}.k^{2019}+d^{2019}.k^{2019}}{b^{2019}+d^{2019}}=\frac{k^{2019}.\left(b^{2019}+d^{2019}\right)}{b^{2019}+d^{2019}}=k^{2019}\)(1)

\(\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{\left(bk+dk\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{[k.\left(b+d\right)]^{2019}}{\left(b+d\right)^{2019}}=\frac{k^{2019}.\left(b+d\right)^{2019}}{\left(b+d\right)^{2019}}=k^{2019}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}\)

Mình viết sai đề đó nha

25 tháng 12 2021

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(a=bk;c=dk\)

Suy ra :

\(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(bk\right)^{2019}+12b^{2019}}{\left(dk\right)^{2019}+12d^{2019}}=\frac{b^{2019}.k^{2019}+12b^{2019}}{d^{2019}.k^{2019}+12d^{2019}}=\frac{b^{2019}\left(k^{2019}+12\right)}{d^{2019}\left(k^{2019}+12\right)}\)

\(\frac{b^{2019}}{k^{2019}}\left(1\right)\)

\(\text{⋆}\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}=\frac{\left(12bk-11b\right)^{2019}}{\left(12dk-11d\right)^{2019}}=\frac{\left[b\left(12k-11b\right)\right]^{2019}}{\left[b\left(12k-11d\right)\right]}=\frac{b^{2019}.\left(12k-11\right)^{2019}}{d^{2019}.\left(12k-11\right)^{2019}}\)

\(=\frac{b^{2019}}{d^{2019}}\)

Từ (1) và (2) suy ra : \(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}\left(đpcm\right)\)