K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 2 2020

1. Không dịch được đề

2. \(\left(m+2\right)x^2-6x+1\le0\) \(\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'=9-\left(m+2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m\ge7\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

3. \(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}=\frac{a^2+b^2}{4ab}+\frac{ab}{a^2+b^2}+\frac{3\left(a^2+b^2\right)}{4ab}\)

\(P\ge2\sqrt{\frac{ab\left(a^2+b^2\right)}{4ab\left(a^2+b^2\right)}}+\frac{6ab}{4ab}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b\)

20 tháng 4 2020

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)

Dấu '' = '' xảy ra khi \(a=b\)

\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)

\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)

Dấu '' = '' xảy ra khi \(a=b=c\)

\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)

\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
10 tháng 1 2017

Lời giải:

Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:

\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)

\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)

Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)

Ta có:

\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)

Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)

Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)

Do đó ta có đpcm

Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.

27 tháng 5 2016

Vì \(a^2\)\(\ge\)0; \(b^2\)\(\ge\)0; 1>0 nên ta áp dụng bất đẳng thức Cosi cho từng cặp ta có:

\(a^2\)+\(b^2\)\(\ge\)2\(\sqrt{a^2b^2}\)=2ab    (1)

\(a^2\)+1\(\ge\)2\(\sqrt{a^21}\)=2a          (2)

\(b^2\)+1\(\ge\)2\(\sqrt{b^2.1}\)=2b         (3)

Cộng vế với vế của (1); (2) và (3) ta có:

2\(a^2\)+2\(b^2\)+2\(\ge\)2ab+2a+2b

\(a^2\)+\(b^2\)+1\(\ge\)ab+a+b( chia cả 2 vế của Bất phương trình cho 2)

Dấu = xảy ra khi a=b=1

27 tháng 5 2016

Ta có : a^2 + b^2 > 2ab

            b^2 + 1 > 2b

            a^2 + 1 > 2a

=> 2(a^2 + b^2 + 1) > (2ab + 2a + 2b)

<=> (a^2 + b^2 + 1) > ab + a + b

 

6 tháng 4 2020

Hỏi đáp ToánHỏi đáp Toán