K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)

Vậy M = 6

10 tháng 7 2016

Thanks

 

18 tháng 6 2015

các bạn cố gắng giúp mình với nhé! cảm ơn mọi người nhìu

25 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 300 giải nhanh nha đã có 241 người nhận rồi

OK ps

30 tháng 12 2019

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\) 

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{abc.a+abc+ab}\) 

Thay abc = 1, ta có:

\(\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)

\(=\frac{ab+a+1}{ab+a+1}\)

\(=1\)

15 tháng 5 2018

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ac+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)

25 tháng 4 2017

P=\(\frac{2017a}{ab+2017a+2017}\)+\(\frac{b}{bc+b+2017}\)+\(\frac{c}{ac+c+1}\)chứ bạn

Với abc=2017 ta có:

P=\(\frac{a^2bc}{ab+a^2bc+abc}\)+\(\frac{b}{bc +b+abc}\)+\(\frac{c}{ac+c+1}\)

P=\(\frac{ac}{ac+c+1}\)+\(\frac{1}{ac+c+1}\)+\(\frac{c}{ac+c+1}\)

P=1

14 tháng 12 2016

LKKJHFJHFDTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTDJHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

5 tháng 6 2015

1/1+a+ab  +1/1+b+bc  +1/1+c+ac

=1/a+1+ab  +a/a+ab+abc  +ab/ab+abc+acab

=1/a+1+ab  +a/a+ab+1  +ab/ab+1+a

=1+a+ab/1+a+ab

=1

vậy 1/a+1+ab  +1/1+b+bc  +1/1+c+ca =1(đpcm)

30 tháng 11 2017

Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc

1/abc+bc+b  = 1/1+bc+b

=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1

=> ĐPCM

k mk nha

30 tháng 11 2017

Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc

1/abc+bc+b  = 1/1+bc+b

=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1

=> ĐPCM


 

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Lời giải:
Dựa vào điều kiện $abc=1$ ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)

Ta có đpcm.

9 tháng 11 2019

Ta có: \(a.b.c=1\)

\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)

\(=\frac{1+ab+a}{1+ab+a}\)

\(=1.\)

\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)

Chúc bạn học tốt!