K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2015

1/1+a+ab  +1/1+b+bc  +1/1+c+ac

=1/a+1+ab  +a/a+ab+abc  +ab/ab+abc+acab

=1/a+1+ab  +a/a+ab+1  +ab/ab+1+a

=1+a+ab/1+a+ab

=1

vậy 1/a+1+ab  +1/1+b+bc  +1/1+c+ca =1(đpcm)

15 tháng 5 2018

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ac+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{a+1+ab}=1\)

18 tháng 6 2015

các bạn cố gắng giúp mình với nhé! cảm ơn mọi người nhìu

25 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 300 giải nhanh nha đã có 241 người nhận rồi

OK ps

4 tháng 5 2016

Vậy để mình giúp  haha

4 tháng 5 2016

Phải là \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+bc+1}=1\) thì mới làm đc bạn à 

19 tháng 6 2015

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ac}=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}=1\)

19 tháng 6 2015

S=\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)

=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)

=\(\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)

thay a.b.c=1 ta được 

\(S=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\)(cộng 3 phân số cùng mẫu c+ac+1)

=\(\frac{c+ac+1}{c+ac+1}=1\)

22 tháng 2 2019

Ta có:

0 ≤ a ≤ b ≤ c ≤ 1; và a, b, c ≥ 0

=> a - 1 ≤ 0 ; b - 1 ≤ 0

=> ( a - 1 )( b - 1 ) ≥ 0

=> ab - a - b + 1 ≥ 0

=> ab + 1 ≥ a + b

=>\(\frac{1}{ab+1}\le\frac{1}{a+b}\)    => \(\frac{c}{ab+1}\le\frac{c}{a+b}\)   (1)

Chứng Minh Tương Tự: =>     \(\frac{a}{bc+1}\le\frac{a}{a+b}\)    (2)

                                          và   \(\frac{b}{ac+1}\le\frac{b}{a+c}\)     (3)

Từ (1); (2) và (3)  =>

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)\(\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

=> \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)( ĐPCM )