Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$
$\Rightarrow b^2+c^2-a^2=b^2+c^2-(b+c)^2=-2bc$
$\Rightarrow \frac{1}{b^2+c^2-a^2}=\frac{1}{-2bc}=\frac{-1}{2bc}$
Hoàn toàn tương tự với các phân thức khác và cộng theo vế:
\(\text{VT}=\frac{-1}{2bc}+\frac{-1}{2ac}+\frac{-1}{2ab}=\frac{-(a+b+c)}{2abc}=\frac{-0}{2abc}=0\) (đpcm)
Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)
Vậy đẳng thức được chứng minh
a. \(a^3+a^2c-abc+b^2c+b^3\)
<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)
<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)
<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)
<=> \(a^2+b^2=2\)=> đpcm
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}=\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(b+c\right)^2-2bc-a^2}+\frac{1}{\left(c+a\right)^2-2ac-b^2}=\frac{1}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\frac{1}{\left(b+c+a\right)\left(b+c-a\right)-2cb}+\frac{1}{\left(c+a+b\right)\left(c+a-b\right)-2ac}=-\frac{1}{2}.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=-\frac{1}{2}.\frac{c+a+b}{abc}=-\frac{1}{2}\)