K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

a)\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{a^3+b^3+c^3}{abc}\)

\(A=\dfrac{3abc}{abc}=3\)(vì a+b+c=0)

b)Ta có: a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a=-b-c\\b=-c-a\\c=-a-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(c+a\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)

\(\Rightarrow B=\dfrac{a^2}{\left(b+c\right)^2-b^2-c^2}+\dfrac{b^2}{\left(a+c\right)^2-c^2-a^2}+\dfrac{c^2}{\left(a+b\right)^2-a^2-b^2}\)

\(\Rightarrow B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}\)

\(\Rightarrow B=\dfrac{a^3+b^3+c^3}{2abc}\)

\(\Rightarrow B=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)(vì a+b+c=0)

27 tháng 2 2018

cm:nếu a+b+c=0 thì a^3+b^3+c^3=3abc

a^3+b^3+c^3=3abc

=>a^3+b^3+c^3-3abc=0

=>(a+b)^3-3ab(a+b)+c^3-3abc=0

=>[(a+b)^3+c^3]-3ab(a+b+c)=0

=>(a+b+c)[(a+b)^2-(a+b)c+c^2] -3ab(a+b+c)=0

=>(a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0

vì a+b+c=0 nên a^3+b^3+c^3=3abc

thay kết quả vừa chúng minh vào đề bài ta đc

\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)

chúc bạn học tốt ^ ^

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Bài 1:

Từ \(a+b+c=0\) ta có:

\(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)

\(=\frac{a^2}{(-b-c)^2-b^2-c^2}+\frac{b^2}{(-c-a)^2-c^2-a^2}+\frac{c^2}{(-b-a)^2-b^2-a^2}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

Do đó \(B=\frac{3abc}{2abc}=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Bài 2:

Lấy P-Q ta có:

\(P-Q=\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)\)

\(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)

\(P-Q=\frac{(a-b)(a^2+ab+b^2)}{a^2+ab+b^2}+\frac{(b-c)(b^2+bc+c^2)}{b^2+bc+c^2}+\frac{(c-a)(c^2+ac+a^2)}{c^2+ac+a^2}\)

\(P-Q=(a-b)+(b-c)+(c-a)=0\Rightarrow P=Q\)

Ta có đpcm.

14 tháng 3 2017

ta chỉ cần cho a, b, c, thỏa mãn điều kiện

ví dụ ta cho a =1 ,b = -2 , c = 1

sau đó gán a, b, c đã thỏa mã điều kiện cho vào biểu thức

thì ta sẽ đươc kết quả giá trị của biểu thức là \(\dfrac{-5}{6}\)

vậy P =\(\dfrac{-5}{6}\)

14 tháng 3 2017

Ngọc Trâm bn làm sai r

8 tháng 1 2018

a + b + c =0

⇒ -( a + b) = c

⇒ c2 = (a+b)2

ta có \(\dfrac{ab}{a^{2^{ }}+b^{2^{ }}_{_{ }}-c^2}\)= \(\dfrac{ab}{a^{2^{ }}+b^{2^{ }}-\left(a+b\right)^2}\)=\(\dfrac{ab}{-2ab}\)=\(\dfrac{-1}{2}\)

tương tự với các số hạng còn lại kết quả là -3/2

8 tháng 1 2018

Theo đề bài ta có :

a + b + c = 0

\(\Rightarrow\left\{{}\begin{matrix}-c=a+b\\-b=a+c\\-a=b+c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c^2=a^2+2ab+b^2\\b^2=a^2+2ac+c^2\\a^2=b^2+2bc+c^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2-c^2=a^2+b^2-a^2-b^2-2ab\\b^2+c^2-a^2=b^2+c^2-b^2-c^2-2bc\\c^2+a^2-b^2=c^2+a^2-a^2-c^2-2ac\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2-c^2=-2ab\\b^2+c^2-a^2=-2bc\\c^2+a^2-b^2=-2ac\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ac}{c^2+a^2-b^2}\)

\(=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ac}{-2ac}=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)

28 tháng 9 2017

a,Sửa lại đề nha bạn:Tính A = \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=\dfrac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcz+acy+abz=0\)

(2) \(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{ac}{xz}+\dfrac{bc}{xz}\right)=4\)\(\Rightarrow A=\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=4-2.\left(\dfrac{abz+acy+bcz}{xyz}\right)=4\)b, \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^2+2ab+b^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\)Tương tự: \(b^2+c^2-a^2=-2bc\)

\(c^2+a^2-b^2=-2bc\)

Vậy \(B=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ac}{-2ac}=\dfrac{-3}{2}\)

24 tháng 5 2018

Áp dụng BĐT Cauchy ta có

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)

\(\dfrac{b^2}{a+c}+\dfrac{a+c}{4}\ge b\)

\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)

Dấu bằng xảy ra khi a=b=c

Làm tắt vài chỗ thông cảm

24 tháng 5 2018

Câu b,

Ta có BĐT Cauchy \(a^2+b^2\ge2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\)

\(\Rightarrow\dfrac{ab}{a+b}\le\dfrac{\left(a+b\right)^2}{4\left(a+b\right)}=\dfrac{a+b}{4}\)

Tương tự \(\dfrac{bc}{b+c}\le\dfrac{b+c}{4}\)

\(\dfrac{ac}{a+c}\le\dfrac{a+c}{4}\)

Cộng theo vế ta đc \(VT\le\dfrac{2\left(a+b+c\right)}{4}=\dfrac{a+b+c}{2}\)

Dấu bằng xảy ra khi a=b=c

5 tháng 7 2017

Bài 2:

Bài 1:

\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)