Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
AM là phân giác
=>MB/AB=MC/AC
=>MB/3=MC/4=10/7
=>MB=30/7cm; MC=40/7cm
b: Xét ΔAMC và ΔNMB có
góc MAC=góc MNB
góc AMC=góc NMB
=>ΔAMC đồng dạng với ΔNMB
a) Xét ΔBMN và ΔCMA có
\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)
\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)
Do đó: ΔBMN∼ΔCMA(g-g)
b) Ta có: ΔBMN∼ΔCMA(cmt)
nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)
Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)
Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)
a, ta có Bx // AC
=> góc BNM =góc MAC( so le trong )
xét tam giác BMN và CMA ,có :
góc BMN =góc CMA (đối đỉnh )
góc BNM =góc MAC (chứng minh trên)
=>tam giác BMN =tam giác CMA
b, do 2tam giác AMC =NMB( theo câu a)
=>\(\dfrac{BA}{AC}\)=\(\dfrac{MN}{AM}\)(1)
TA CÓ :AN là tia pg góc BÁC =>góc BAM = góc MAC
mà góc BNM = góc MAC ( chứng minh trên )
=>góc BNM = góc BAM
=>tam giác BAN cân tại B
=>BN =BA =>\(\dfrac{BA}{AC}\)= \(\dfrac{BN}{AC}\)(2)
Từ (1) và (2) =>\(\dfrac{BA}{AC}\)= \(\dfrac{MN}{AM}\)(ĐPCM)
c, ta có BN //AC
mà NP vuông góc với AC
=>BN vuông góc với NP
Xét tứ giác ABNP có 3 góc BNP=NPA =PAB=900
=>ABNP là hcn
mà hcn ABNP có BN =AB (vì tam giác ABN cân tại B)
=>ABNP là hình vuông =>BN =NP =AP=AB=6
Ta có :AP+PC =AC =>PC =8-6=2
xét tam giác PIC có PC //BN (do ac//bn)
=>\(\dfrac{BN}{PC}\)=\(\dfrac{NI}{IP}\)=\(\dfrac{BI}{IC}\)( theo hệ quả của định lí TA -LET)(3)
=>\(\dfrac{IN}{IP}\)=\(\dfrac{6}{2}\) =>\(\dfrac{NI}{NP-NI}\) =\(\dfrac{6}{2}\)=> 6(NP-NI)=2NI=>36-6NI=2NI
=>36=2NI+6NI => 36=8MI =>NI=4,5
ta có NP=NI+IP =>PI=6-4,5=1,5
Áp dụng định lí Py -ta go vào tam giác BIN
=> BI2=BN2+NI2=>BI2=62+4,52=56,25 =>BÍ=7,5
Ta có \(\dfrac{BI}{IC}\)=\(\dfrac{BN}{PC}\)=>\(\dfrac{BI}{IC}\)=\(\dfrac{6}{2}\) =>IC =\(\dfrac{BI.2}{6}\)=>IC=2,5
Vậy IC=2,5 ;BI=7,5 ; NI=4,5 ;IP=1,5