Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (a+b+c)^2=a^2+b^2+c^2 ab+bc+ca=0
<-->bc=−ac−ca -->a^2+2bc=a^2+bc−ca−ab
<--> a^2+2bc=(a−c)(a−b)
Tương tự với 2 phân số còn lại rồi quy đồng
2) Cộng hai vế của c^2+2(ab−ac−bc)=0 lần lượt với a^2;b^2 ta có:
a^2=c^2+2ab−2ac−2bc+a^2=(a−c)^2+2b(a−c) (1)
b^2=c^2+2ab−2ac−2bc+b^2=(b−c)^2+2a(b−c) (2)
Từ (1) và (2) -> $\frac{\text{a^2+(a−c)^2}}{\text{b^2+(b−c)^2}}=\frac{\text{(a−c)^2+2b(a−c)+(a−c)^2}}{\text{(b−c)^2+2a(b−c)+(b−c)^2}}=\frac{\text{2(a−c)^2+2b(a−c)}}{\text{2(b−c)^2+2a(b−c)}}=\frac{\text{2(a−c)(a−c+b)}}{\text{2(b−c)(b−c+a)}}=\frac{a-c}{b-c}$a^2+(a−c)^2b^2+(b−c)^2 =(a−c)^2+2b(a−c)+(a−c)^2(b−c)^2+2a(b−c)+(b−c)^2 =2(a−c)^2+2b(a−c)2(b−c)^2+2a(b−c) =2(a−c)(a−c+b)2(b−c)(b−c+a) =a−cb−c
1) (a+b+c)^2=a^2+b^2+c^2 ab+bc+ca=0
<-->bc=−ac−ca -->a^2+2bc=a^2+bc−ca−ab
<--> a^2+2bc=(a−c)(a−b)
Tương tự với 2 phân số còn lại rồi quy đồng
2) Cộng hai vế của c^2+2(ab−ac−bc)=0 lần lượt với a^2;b^2 ta có:
a^2=c^2+2ab−2ac−2bc+a^2=(a−c)^2+2b(a−c) (1)
b^2=c^2+2ab−2ac−2bc+b^2=(b−c)^2+2a(b−c) (2)
Từ (1) và (2) -> \(\frac{\text{a^2+(a−c)^2}}{\text{b^2+(b−c)^2}}=\frac{\text{(a−c)^2+2b(a−c)+(a−c)^2}}{\text{(b−c)^2+2a(b−c)+(b−c)^2}}=\frac{\text{2(a−c)^2+2b(a−c)}}{\text{2(b−c)^2+2a(b−c)}}=\frac{\text{2(a−c)(a−c+b)}}{\text{2(b−c)(b−c+a)}}=\frac{a-c}{b-c}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
Ta có:
\(P=\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
\(P=\dfrac{a^2}{a^2+bc-ab-ca}+\dfrac{b^2}{b^2+ac-ab-bc}+\dfrac{c^2}{c^2+ab-bc-ca}\)
\(P=\dfrac{a^2}{\left(a-c\right).\left(a-b\right)}-\dfrac{b^2}{\left(a-b\right).\left(b-c\right)}+\dfrac{c^2}{\left(b-c\right).\left(a-c\right)}\)
Rồi cứ quy đồng lên và rút gọn nha.
1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)
\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)
\(=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=1\)
Vậy A = 1
Bài 2: ( đặt đề bài là A )
Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)
\(\Rightarrow a+b+c=x+y+z\)
\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(=3.2c.2a.2b=24abc\)
Vậy...
Bài 3:
+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )
+) Xét \(p\ne3\) thì:
+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)
+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)
Vậy p = 3
Bài 4:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
\(\Rightarrowđpcm\)
Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
Ta lại có:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{a^2-ab+bc-ca}+\frac{b^2}{b^2-ab-bc+ca}+\frac{c^2}{c^2+ab-bc-ca}\)
\(=\frac{a^2}{\left(b-a\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(c-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)
\(=-\left(\frac{a^2}{\left(a-b\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\right)\)
\(=-\left(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)
\(=-\frac{\left(a-b\right)\left(c-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Ai có thể giải thích cho mình đoạn a^2/(a^2-ab+bc-ca) đc ko mình cảm ơn
Từu giả thiết \(\Rightarrow ab+bc+ca=0\Rightarrow bc=-ab-ac\). Thay vào ta được:
\(a^2+2bc=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\)
Tương tự rồi quy đồng, rút gọn ta tính được giá trị của P
Đặt \(ab=x;bc=y;ca=z\) thì có \(x^3+y^3+z^3=3xyz\) dễ nhé
a ) \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Do \(a^2\ge0;b^2\ge0;c^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )
Thay * vào biểu thức M , ta được :
\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)
\(=-1^{1999}+0+1^{2001}\)
\(=-1+0+1\)
\(=0\)
Vậy \(M=0\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)
\(\Leftrightarrow bc+ac+ab-1=0\)
\(\Leftrightarrow bc+ac+ab=1\)
Mà \(a^2+b^2+c^2=1\)
\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)
\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)
\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Mà \(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)
\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)
\(\Rightarrow P=1+1+1=3\)
Vậy \(P=3\)
Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+2ab+b^2+2bc+c^2+2ca=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
*\(a^2+2bc=a^2+bc-ca-ab=\left(a-c\right)\left(a-b\right)\)
Tương tự cho 2 cái còn lại.
Ta có:
\(C=\dfrac{a^2}{a^2+bc-ab-ca}+\dfrac{b^2}{b^2+ac-ab-bc}+\dfrac{c^2}{c^2+ab-bc-ca}\)
\(C=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(a-b\right)\left(b-c\right)}+\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\)
Tới đây cứ việc quy đồng mẫu là được.