Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3+b3+c3=(a+b+c)3-3(a+b)(a+c)(b+c)
Vì a3+b3+c3 \(⋮\)6 nên [(a+b+c)3-3(a+b)(a+c)(b+c)] \(⋮\)6
Mà trong 3(a+b)(a+c)(b+c) luôn có ít nhất 1 số chẵn ( xét các trường hợp a,b,c lần lượt là : lẻ, lẻ, lẻ; chẵn,chẵn, chẵn; chẵn, lẻ, lẻ; chẵn, chẵn, lẻ;chẵn lẻ chẵn; lẻ chẵn lẻ; lẻ chẵn chẵn; lẻ lẻ chẵn..[tìm thêm ])
nên 3(a+b)(a+c)(b+c)\(⋮\)6
=> (a+b+c)3 phải chia hết cho 6
Lại có a,b,c là các số tự nhiên nên suy ra a+b+c phải chia hết cho 6.
a3+b3+c3=(a+b+c)(a^2+b^2+c^2−ab−bc−ac)+3abc
a^3+b^3+c^3=(a+b+c)(a^2+b2+c^2−ab−bc−ac)+3abc
=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc
=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc
*Nếu a+b+c⋮3⇒a3+b3+c3⋮3a+b+c⋮3⇒a3+b3+c3⋮3
*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3a3+b3+c3⋮3
⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3
=>đpcm
Mk nhác ghi mũ lắm thông cảm nha Vd; a2=a^2
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
\(a,\)Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)
\(=4\left(3+3^3+...+3^9\right)⋮4\)
\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)
\(\Rightarrow\)ĐPCM
A = 2+21+22+23+...+260
A = 2+2+2.2+2.2.2+........+2.2.2............2
Vì tất cả các số của tổng A là 2=> A chia hết cho 2
b) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)
A = 2.14+ 25.14+..........+256.14
A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7
c) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)
A = 2.30+ 26.30+..........+255.30
A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15