K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

\(\dfrac{b+c}{bc}=\dfrac{2}{a}\) <=>\(ab+ac=2bc\)

<=>\(bc-ab=ac-bc\)

<=>\(b\left(c-a\right)=c\left(a-b\right)\)

<=>\(\dfrac{b}{c}=\dfrac{a-b}{c-a}\)(ĐPCM)

Chúc Bạn Học Tốt,đạt nhiều thành tích trong học tập :)

21 tháng 8 2017

Từ \(\dfrac{b}{c}=\dfrac{a-b}{c-a}\)\(\Rightarrow b\left(c-a\right)=c\left(a-b\right)\)

\(\Rightarrow bc-ab=ac-bc\)

\(\Rightarrow2bc=ac+ab\)\(\Rightarrow2bc=a\left(b+c\right)\)

\(\Rightarrow\dfrac{b+c}{bc}=\dfrac{2}{a}\) (ĐPCM)

19 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )

Võ Nguyễn Thương Thương 

12 tháng 2 2018

ta có : \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)

khi đó ta có : \(\dfrac{b-a}{a}=\dfrac{b^2-a^2}{a^2+c^2}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{b-a}{a}\) (luôn đúng)

\(\Rightarrow\) (đpcm)

22 tháng 11 2022

\(\Leftrightarrow\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)

=>10ac+bc=10b^2+cb

=>10ac=10b^2

=>ac=b^2

=>a/b=b/c=k
=>a=bk; b=ck

=>a=ck*k=k^2*c

\(\dfrac{a}{c}=\dfrac{k^2c}{c}=k^2\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+b^2}{c^2k^2+c^2}=\dfrac{b^2}{c^2}=\dfrac{c^2k^2}{c^2}=k^2\)

=>ĐPCM

14 tháng 10 2018

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

14 tháng 10 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

16 tháng 10 2022

Câu 2: 

Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)

=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc

=>9ac-9b^2=0

=>ac-b^2=0

=>ac=b^2

=>a/b=b/c

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)

19 tháng 11 2017

con cảm ơn cô

23 tháng 12 2017

Ta có :

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}:\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\cdot\dfrac{2}{1}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{2}{c}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

14 tháng 8 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

b, Ta có: \(a^2=bc\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrowđpcm\)

14 tháng 8 2017

a) $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1$

(tính chất dãy tỉ số bằng nhau)

$\dfrac{a}{b}=1=>a=b$

$\dfrac{b}{c}=1=>b=c$

$\dfrac{c}{a}=1=>c=a$

Vậy a = b = c.

b) Ta có : $a^2=bc=>\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$(tính chất dãy tỉ số bằng nhau)

$=>\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}$

$=>\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}$