K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔDBC vuông tại D(BD⊥AC tại D)

mà DO là đường trung tuyến ứng với cạnh huyền BC(O là trung điểm của BC)

nên \(DO=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

1 tháng 2 2020

hình bạn tự vẽ nha

a) Xét \(\Delta BDC\)vuông tại D có DO là đường trung tuyến ứng với cạnh huyền BC nên DO = \(\frac{1}{2}BC\)

b) Tương tự : OE = \(\frac{1}{2}BC\)

\(\Rightarrow OD=OE\)\(\Rightarrow\Delta ODE\)cân tại O \(\Rightarrow\widehat{OED}=\widehat{ODE}\)

Suy ra \(\widehat{MEO}=\widehat{NDO}\) ( cùng bù với 2 góc bằng nhau )

Xét \(\Delta MEO\)và \(\Delta NDO\)có :

EM = DN

\(\widehat{MEO}=\widehat{NDO}\)

OE = OD

\(\Rightarrow\Delta MEO=\Delta NDO\left(c.g.c\right)\)

\(\Rightarrow OM=ON\)\(\Rightarrow\Delta OMN\)cân tại O

29 tháng 2 2020

a, tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB (đl)

góc ACB = góc ECN (đối đỉnh)

=> góc ABC  = góc ECN 

xét tam giác BDM và tam giác ECN có : BD = CE (gt)

góc MDB = góc CEN = 90

=> tam giác BDM = tam giác ECN (cgv-gnk)

=> DM = EN (đn)

b, MD _|_ BC (gt)

NE _|_ BC (gT)

=> MD // EN (Đl)

=> góc DMI = góc INE (slt)

xét tam giác DMI và tam giác ENI có : góc MDI = góc NEI  = 90

MD = EN (Câu a)

=>  tam giác DMI = tam giác ENI (cgv-gnk)

=> DI = IE (đn) mà I nằm giữa D và E 

=> I là trđ của DE (đn)

c, xét tam giác ABO và tam giác ACO có : AO chung

AB = AC do tam giác ABC cân tại A (gT)

góc ABO = góc ACO = 90

=> tam giác ABO = tam giác ACO (ch-cgv)

=> BO = CO (đn) 

=> O thuộc đường trung trực của BC (đl)

AB = AC (cmt) => A thuộc đường trung trực của BC (Đl)

=> AO là trung trực của BC

29 tháng 2 2020

Hình tự vẽ nha.

a, Xét \(\Delta MBD\)và \(\Delta NEC\)có:

\(CE=BD\left(gt\right)\)

\(\widehat{NEC}=\widehat{MDB}=90^0\)

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACD}\right)\)

\(\Rightarrow\Delta MBD=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=EN\left(2c.t.ứ\right)\)

b, Xét \(\Delta MID\)và \(\Delta NIE\) có:

\(\widehat{MDI}=\widehat{NEI}=90^0\)

\(EN=MD\left(cmt\right)\)

\(\widehat{MID}=\widehat{NIE}\left(đ.đ\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gn\right)\)

\(\Rightarrow ID=IE\left(2.c.t.ứ\right)\)

\(\Rightarrow I\) là giao điểm của \(DE\)

c, Xét \(\Delta ABO\) và \(\Delta ACO\) có:

\(AB=AC\)

\(\widehat{ABO}=\widehat{ACO}=90^0\)

\(AO\) là cạnh chung

\(\Rightarrow\text{​​}\)\(\Delta ABO=\Delta ACO\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\left(2g.t.ứ\right)\)

\(\Rightarrow AO\)là đường phân giác trong \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow AO\) là đường trung trực của \(BC\)

20 tháng 1 2021

a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)

Xét tg vuông MBD và tg vuông NCE có

BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE

b/ Xét tứ giác MEND có

\(MD\perp BC;NE\perp BC\) => MD//NE

MD=NE (cmt)

=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)

MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

c/ ta có

\(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)

\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)

\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO

Xét tg vuông ABO và tg vuông ACO có

AB=AC (Do tg ABC cân tại A)

BO=CO (cmt)

\(\widehat{ABO}=\widehat{ACO}=90^o\)

=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)

=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0