Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+d+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+b+a}+\frac{d}{d+a+b}< \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 1\) (1)
Lại có: \(\frac{a}{a+b+c}< \frac{a+c}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+d}{a+b+c+d}\)
\(\frac{c}{c+d+a}< \frac{c+a}{a+b+c+d}\)
\(\frac{d}{d+a+b}< \frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{c+a}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) (2)
Từ (1)(2) => \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) (đpcm)
Vì a,b,c,d thuộc N*
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{d+c}{a+b+c+d}\)
e cộng vế theo vế đc 1<...<2
Ta có \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d} \quad (vì\quad a,b,c,d>0)\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\); \(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}; \quad \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
=> \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\) (1)
Lại có:\(\frac{a}{a+b+c}<\frac{a}{a+b} \quad (vì\quad a,b,c,d>0)\);
\(\frac{b}{b+c+d}<\frac{b}{a+b};\quad \frac{c}{c+d+a}<\frac{c}{c+d} ;\frac{d}{d+a+b}<\frac{d}{c+d}\)
=> \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}<\frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)(2)
Từ (1) và (2) Ta có...
Vì a, b, c, d đều là các số nguyên dương nên:
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d};\frac{b}{b+c+d}>\frac{b}{a+b+c+d};\frac{c}{c+d+a}>\frac{c}{a+b+c+d};\frac{d}{d+a+b}\)\(>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)
Lại có: \(\frac{a}{a+b+c}< \frac{a}{a+c};\frac{b}{b+c+d}< \frac{b}{b+d};\frac{c}{c+d+a}< \frac{c}{a+c};\frac{d}{d+a+b}< \frac{d}{d+b}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}=2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)