Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m được \(x^3:7\) dư 0 hoặc 1 hoặc 6
+Xét 1 trong 3 số a,b,c chia hết cho 7 suy ra
\(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)\)chia hết cho 7 .
Xét 3 số \(a^3,b^3,c^3\) không có só nào chia hết cho 7. Vậy ba số chia 7 chỉ có thể dư 1 hoặc 6. Suy ra chắc chắn có ít nhất 2 số cùng số dư. Vậy hiệu của chúng chia hết cho 7.
\(\rightarrowĐPCM\)
Xét số nguyên \(x\)bất kì.
- \(x=3k\): \(x^3=27k^3⋮9\)
- \(x=3k+1\): \(x^3=\left(3k+1\right)^3=27k^3+27k^2+9k+1\equiv1\left(mod9\right)\)
- \(x=3k-1\): \(x^3=\left(3k-1\right)^3=27k^3-27k^2+9k-1\equiv-1\left(mod9\right)\)
Vậy lập phương của một số nguyên khi chia cho \(9\)chỉ có thể có dư là \(0,1,8\).
mà \(a^3+b^3+c^3=2007⋮9\)nên có ít nhất một trong ba số hạng đó chia hết cho \(9\).
khi đó nó chia hết cho \(3\).
Vậy \(abc⋮3\).
a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ac)+3abc
=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc
=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc
*Nếu a+b+c⋮3⇒a3+b3+c3⋮3
*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3⇒a+b+c⋮3
làm như vậy nha, mk xin lỗi , ko bt cách viết số mũ nha, k nha
Xét \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[a^2+2ab+b^2-ac-bc+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
- Nếu \(a+b+c⋮3\)\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\)
Mà 3abc chia hết cho 3 \(\Rightarrow a^3+b^3+c^3⋮3\)
- Nếu \(a^3+b^3+c^3⋮3\)mà \(3abc⋮3\Rightarrow a^3+b^3+c^3-3abc⋮3\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\Rightarrow a+b+c⋮3\)
Chúc bạn học tốt.
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k mk nha
<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM
k
mk nha
:D
Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)
Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)
Mấy câu còn lại tương tự
C/m được \(x^3:7\) dư 0 hoặc 1 hoặc 6
+Xét 1 trong 3 số a,b,c chia hết cho 7 suy ra
\(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)\)
+Xét 3 số \(a^3,b^3,c^3\) không có só nào chia hết cho 7. Vậy ba số chia 7 chỉ có thể dư 1 hoặc 6. Suy ra chắc chắn có ít nhất 2 số cùng số dư. Vậy hiệu của chúng chia hết cho 7.
\(\rightarrowĐPCM\)