Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Bu-nhi-a: (a2+b2+c2)(12+22+32)≥(a+2b+3c)2
⇔(a2+b2+c2).14≥142⇔(a2+b2+c2).14≥142( do a+2b+3c=14a+2b+3c=14(gt)).
mà a2+b2+c2=14 nên xuất hiện dấu bằng của bđt
từ đó tính đc a,b,c...
Lời giải:
Vì \(a,b,c\in [-2;5]\) nên:
\(\left\{\begin{matrix} (a+2)(a-5)\leq 0\\ (b+2)(b-5)\leq 0\\ (c+2)(c-5)\leq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ b^2\leq 3b+10\\ c^2\leq 3c+10\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ 2b^2\leq 6b+20\\ 3c^2\leq 9c+30\end{matrix}\right. \)
Do đó:
\(a^2+2b^2+3c^2\leq 3(a+2b+3c)+60\)
Mà \(a+2b+3c\leq 2\)
\(\Rightarrow a^2+2b^2+3c^2\leq 3.2+60=66\)
Ta có đpcm
Dấu bằng xảy ra khi \((a,b,c)=(-2,5,-2)\)
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
Vì \(-2\le a;b;c\le5\Rightarrow\hept{\begin{cases}\left(a+2\right)\left(a-5\right)\le0\\2\left(b+2\right)\left(b-5\right)\le0\\3\left(c+2\right)\left(c-5\right)\le0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a^2-3a-10\le0\\2b^2-6b-20\le0\\3c^2-9b-30\le0\end{cases}}\)
\(\Rightarrow a^2+2b^2+3c^2-3\left(a+2b+3c\right)-60\le0\)
\(\Rightarrow a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\) (ĐPCM)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=5\end{cases};\orbr{\begin{cases}b=-2\\b=5\end{cases};\orbr{\begin{cases}c=-2\\c=5\end{cases}}}}\)
\(GT\Rightarrow\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)
Ta có: \(\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{b^4}\ge4\sqrt[4]{\frac{1}{a^{12}b^4}}=\frac{4}{a^3b}\)
Tương tự: \(\frac{3}{b^4}+\frac{1}{c^4}\ge\frac{4}{b^3c}\) ; \(\frac{3}{c^4}+\frac{1}{a^4}\ge\frac{4}{c^3a}\)
\(\Rightarrow\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}\le\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)
\(VT=\frac{1}{a^3b+c^2+c^2+1}+\frac{1}{b^3c+a^2+a^2+1}+\frac{1}{c^3a+b^2+b^2+1}\)
\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{2}{c^2}+1+\frac{1}{b^3c}+\frac{2}{a^2}+1+\frac{1}{c^3a}+\frac{2}{b^2}+1\right)\)
\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}+2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\right)\)
\(VT\le\frac{1}{16}\left(6+2\sqrt{3\left(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\right)}\right)=\frac{1}{16}\left(6+6\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Bunhiacopxki :
\(A^2=\left(1.a+2.b+3.c\right)^2\le\left(1^2+2^2+3^2\right)\left(a^2+b^2+c^2\right)=14\)
\(\Rightarrow A\le\sqrt{14}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a=\frac{b}{2}=\frac{c}{3}\\a^2+b^2+1=1\end{cases}}\)
Sửa đề: Cho thêm a,b,c dương
Áp dụng BĐT AM-GM ta có:
\(a^2+2b^2+3c^2\ge6\sqrt[6]{a^2\cdot b^2\cdot b^2\cdot c^2\cdot c^2\cdot c^2}=6\sqrt[6]{a^2b^4c^6}\)
\(\Rightarrow3abc\ge6\sqrt[6]{a^2b^4c^6}\Leftrightarrow abc\ge2\sqrt[6]{a^2b^4c^6}\)
\(\Leftrightarrow a^6b^6c^6\ge64a^2b^4c^6\Leftrightarrow a^4b^2\ge64\Leftrightarrow a^2b\ge8\)
\(\Rightarrow2\le\sqrt[3]{a\cdot a\cdot b}\le\dfrac{2a+b}{3}\Leftrightarrow2a+b\ge6\)
Khi đó ta có: \(P=2a+\dfrac{8}{a}+\dfrac{3b}{2}+\dfrac{6}{b}+c+\dfrac{4}{c}+\dfrac{2a+b}{2}\)
Áp dụng tiếp BĐT AM-GM ta có:
\(P\ge2\sqrt{2a\cdot\dfrac{8}{a}}+2\sqrt{\dfrac{3b}{2}\cdot\dfrac{6}{b}}+2\sqrt{c\cdot\dfrac{4}{c}}+\dfrac{6}{2}\left(2a+b\ge6\right)\)
\(=2\sqrt{16}+2\sqrt{9}+2\sqrt{4}+3=8+6+4+3=21\)
Đẳng thức xảy ra khi \(a=b=c=2\)
Người ta bảo tính giá trị của biểu thức chứ có bảo tìm cực trị của nó đâu.
Ta có:
Vt = 1/a +1/b +1/b >= 9/(a+2b)
Mặt khác
(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2
=>(a+2b)<=3c
9/(a+2b)>=9/3c =3/c
=Vt >=3/c dpcm
Dấu "="xảy ra khi a=b=c =1
Ta có:
Vt = 1/a +1/b +1/b >= 9/(a+2b)
Mặt khác
(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2
=>(a+2b)<=3c
9/(a+2b)>=9/3c =3/c
=Vt >=3/c dpcm
Dấu "="xảy ra khi a=b=c =1
\(14^2=\left(a+2b+3c\right)^2\le\left(1+4+9\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2\ge14\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(1;2;3\right)\)
\(\Rightarrow M=\)