K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2021

\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)

\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)

\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

5 tháng 12 2018

Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)

CMTT và cộng theo vế:

\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

6 tháng 11 2018

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)

\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

6 tháng 11 2018

a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)

\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)

23 tháng 9 2018

Áp dụng BĐT \(AM-GM\) ta có :

\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+3\ge2y+2\end{matrix}\right.\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\Rightarrow\dfrac{1}{x^2+2y^2+3}\le\dfrac{1}{2\left(xy+y+1\right)}\)

Tương tự : \(\dfrac{1}{y^2+2z^2+3}\le\dfrac{1}{2\left(yz+z+1\right)}\)

\(\dfrac{1}{z^2+2x^2+3}\le\dfrac{1}{2\left(zx+x+1\right)}\)

Cộng từng vế BĐT ta được :

\(\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{xyz}{xy+y+xyz}+\dfrac{x}{xyz+zx+x}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{xz+x+1}{xy+x+1}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)

10 tháng 11 2017

Ta có :

\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)

\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

tương tự với hai ông còn lại sau đó cộng lại ta được:

\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)

NV
14 tháng 9 2021

\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)

Mặt khác:

\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)

\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)

14 tháng 9 2021

Anh ơi có thể cho e biết cái kết quả khi bình phương đc ko ạ

 

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27