Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow AB=5\) ; \(\overrightarrow{CA}=\left(4;-3\right)\Rightarrow AC=5\)
\(\Rightarrow AB=AC\Rightarrow\) tam giác ABC cân tại A
\(\Rightarrow\) Phân giác trong góc A đồng thời là trung tuyến ứng với BC
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{1}{2};\dfrac{3}{2}\right)\Rightarrow\overrightarrow{MA}=\left(\dfrac{1}{2};\dfrac{1}{2}\right)=\dfrac{1}{2}\left(1;1\right)\)
\(\Rightarrow\) Đường thẳng AM nhận (1;-1) là 1 vtpt
Phương trình AM (đồng thời là phân giác trong góc A):
\(1\left(x-1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+1=0\)
a) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}} = (4;3)\)
PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}} = (4;3)\) làm VTPT là:
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}} = 5\)
\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)
c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:
\({(x + 1)^2} + {(y - 3)^2} = 1\)
a: vecto AB=(2;-1)
PTTS AB là:
x=1+2t và y=2-t
vecto AB=(2;-1)
=>VTPT là (1;2)
PTTQ của AB là:
1(x-1)+2(y-2)=0
=>x-1+2y-4=0
=>x+2y-5=0
c:PT đường cao CH là:
2(x-5)+(-1)(y-4)=0
=>2x-10-y+4=0
=>2x-y-6=0
Tọa độ hình chiếu của C trên AB là:
2x-y-6=0 và x+2y-5=0
=>C(17/5;4/5)
e: PT (C) có dạng là:
x^2+y^2-2ax-2by+c=0
Theo đề, ta có:
1+4-2a-4b+c=0 và 9+1-6a-2b+c=0 và 25+16-10a-8b+c=0
=>a=23/8; b=13/4; c=55/4
=>(C): x^2+y^2-23/4x-13/2x+55/4=0
=>x^2-2*x*23/8+529/64+y^2-2*x*13/4+169/16=325/64
=>(x-23/8)^2+(y-13/4)^2=325/64
a) \(\cos A=-\dfrac{3}{5}\Rightarrow\widehat{A}\approx126^052'\)
b) \(AB:2x+y-1=0;AC=2x-y-3=0\)
c) Phân giác trong \(AD\) có phương trình : \(y+1=0\)
a) Gọi M là trung điểm cạnh CA thì \(M\left(\frac{3}{2};1\right)\) và \(\overrightarrow{BM}=\left(\frac{9}{2};-3\right)\).
Đường trung tuyến BM của tam giác có vec tơ chỉ phương \(\overrightarrow{u}=\frac{2}{3}.\overrightarrow{BM}=\left(3;-2\right)\) suy ra ta có phương trình
\(\frac{x+3}{3}=\frac{y-4}{-2}\)
b) Do đường cao kẻ từ A có phương vuông góc với đường thẳng BC nên nó nhận \(\overrightarrow{BC}=\left(5;-4\right)\) làm vec tơ pháp tuyến. Suy ra có phương trình.
\(5.\left(x-1\right)-4\left(y-2\right)=0\) hay \(5x-4y+3=0\)
c) Ta có \(\overrightarrow{AB}=\left(-4;2\right)=2.\left(-2;1\right)\). Gọi N là trung điểm AC thì N(-1;3)
Đường trung trực của cạnh AB đi qua N(-1;3) và có vec tơ pháp tuyến
\(\overrightarrow{n}=\frac{1}{2}.\overrightarrow{AB}=\left(-2;1\right)\)
Suy ra có phương trình
\(-2.\left(x+1\right)+1.\left(y-3\right)=0\) hay \(-2x+y-5=0\)
bạn ơi trên −−→BM=(92;−3)��→=(92;−3)
dưới −−→BM=(3;−2) là sao bạna: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)