Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK bổ sung thêm nhé: abc=1
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{abc.a+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) ( thay abc = 1 )
\(=\frac{ab+a+1}{ab+a+1}=1\)
\(T=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)
\(=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
\(=\frac{a^2}{a^2-\left(b+c\right)^2+2bc}+\frac{b^2}{b^2-\left(c+a\right)^2+2ca}+\frac{c^2}{c^2-\left(a+b\right)^2+2ab}\)
\(=\frac{a^2}{a^2-\left(-a\right)^2+2bc}+\frac{b^2}{b^2-\left(-b\right)^2+2ca}+\frac{c^2}{c^2-\left(-c\right)^2+2ab}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)
\(=\frac{a^3+b^3+c^3}{2abc}\)
Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\) ( tự chứng minh nhé )
\(\Rightarrow T=\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy T=3/2
Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)
Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn
Lời giải:
Từ \(a+b+c+ab+bc+ac=0\)
\(\Rightarrow a+b+c+ab+bc+ac+abc+1=1\)
\(\Leftrightarrow (a+1)(b+1)(c+1)=1\)
Đặt \(\left\{\begin{matrix} a+1=x\\ b+1=y\\ c+1=z\end{matrix}\right.\Rightarrow xyz=1\)
Biểu thức trở thành:
\(A=\frac{1}{(a+2)+a+b+ab+1}+\frac{1}{(b+2)+b+c+bc+1}+\frac{1}{(c+2)+c+a+ac+1}\)
\(A=\frac{1}{(a+2)+(a+1)(b+1)}+\frac{1}{(b+2)+(b+1)(c+1)}+\frac{1}{(c+2)+(c+1)(a+1)}\)
\(A=\frac{1}{x+1+xy}+\frac{1}{y+1+yz}+\frac{1}{z+1+zx}\)
\(A=\frac{z}{xz+z+xyz}+\frac{zx}{yxz+xz+yz.xz}+\frac{1}{z+1+xz}\)
hay \(A=\frac{z}{xz+z+1}+\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}\) (thay \(xyz=1\))
\(\Leftrightarrow A=\frac{z+xz+1}{xz+z+1}=1\)
Vậy \(A=1\)
Áp dụng định lý pytago vào ΔABC vuông tại A, ta được
\(BC^2=AB^2+AC^2=24^2+7^2=576+49=625\)
hay \(BC=\sqrt{625}=25cm\)
Gọi DE là đường trung bình//BC của ΔABC
\(\Rightarrow DE=\frac{BC}{2}=\frac{25}{2}=12.5\)cm
Loại toán này nếu nắm được cách thì đơn giản lắm! Bạn chỉ cần thay tất cả số 1999 thành abc rồi rút gọn thôi!
\(\frac{1999a}{ab+1999a+1999}+\frac{b}{bc+b+1999}+\frac{c}{ac+c+1}\)
Mk thay rồi rút gọn luôn nha
\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
Nếu đề bài là abc=1 thì bạn giữ lại một trong 3 đừng thay số rồi làm như trên là OK