K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

ta có : \(A=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(=\dfrac{a}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{abc^2}{abc^2+abc+ac}\)

\(=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\) \(=\dfrac{bc+b+1}{bc+b+1}=1\) (sữa đề)

2 tháng 4 2017

Thay abc = 2 vào biểu thức A ta được:

\(A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc\cdot c}{ac+abc+abc}\\ A=\dfrac{1}{b+1+bc}+\dfrac{b}{bc+b+1}+\dfrac{bc}{1+bc+b}\\ A=\dfrac{1+b+bc}{1+b+bc}\\ A=1\)

22 tháng 12 2017

Hàng thứ 2 phải sửa lại như vậy:

\(A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc.c}{ac+abc.c+abc}\)

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

1 tháng 4 2018

Thay abc=2013 vào P

P= \(\dfrac{abc.a^2bc}{ab+abc.a+abc}\)+\(\dfrac{ab^2c}{bc+b+abc}+\dfrac{abc^2}{ac+c+1}\)

P=\(\dfrac{a^3b^2c^2}{ab\left(1+ac+c\right)}+\dfrac{ab^2c}{b\left(c+1+ac\right)}+\dfrac{abc^2}{ac+c+1}\)

P=\(\dfrac{a^2bc^2}{ac+c+1}+\dfrac{abc}{c+ac+1}+\dfrac{abc^2}{ac+1+c}\)

P=\(\dfrac{a^2bc^2+abc+abc^2}{ac+c+1}\)

P=abc (*)

Thay abc=2013 vào (*)

P=2013

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

27 tháng 12 2020

M\(=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

 

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2bc}{b\left(ac+2c+2\right)}\)

M = \(\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{abc+2bc+2b}\)

M=\(\dfrac{1}{b+1+bc}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{2+2bc+2b}\)

M = \(\dfrac{1+b}{b+1+bc}+\dfrac{2bc}{2\left(1+bc+b\right)}\)

M = \(\dfrac{1+b}{b+1+bc}+\dfrac{bc}{b+1+bc}=\dfrac{1+b+bc}{b+1+bc}=1\)

29 tháng 6 2021
Sao ngu vậy bn
AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Lời giải:

a) Vì $abc=1$ nên ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc.+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+c+1}=1\)

(đpcm)

b)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow \left\{\begin{matrix} x=ka\\ y=kb\\ z=kc\end{matrix}\right.\)

\(x+y+z=ka+kb+kc=k(a+b+c)=k\)

\(x^2+y^2+z^2=k^2a^2+k^2b^2+k^2c^2=k^2(a^2+b^2+c^2)=k^2\)

\(\Rightarrow A=xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{k^2-k^2}{2}=0\)