Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=a^3+b^3+ab=(a+b)^3-3ab(a+b)+ab=11^3-3ab.11+ab=1331-32ab$
$=1331-32a(11-a)=32a^2-352a+1331$
$=32(a^2-11a)+1331$
$=32(a^2-11a+5,5^2)+363=32(a-5,5)^2+363\geq 363$
Vậy $A_{\min}=363$
Giá trị này đạt tại $a-5,5=0\Leftrightarrow a=5,5$
1, hiển nhiên a+b>0
có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3
a) Áp dụng bất đẳng thức Bnhiacopxki ta có :
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
b) Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Rightarrow ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
\(P=a^3+b^3+c^3+a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
\(=a^3+a^2\left(b+c\right)+b^3+b^2\left(c+a\right)+c^3+c^2\left(b+a\right)\)
\(=a^2\left(a+b+c\right)+b^2\left(b+c+a\right)+c^2\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=1\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)
Tớ có cách khác:
Từ giả thiết suy ra:
\(P=a^3+b^3+c^3+a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\)\(=a^2+b^2+c^2\)
Lại có: \(a^2+\frac{1}{9}\ge2\sqrt{a^2.\frac{1}{9}}=\frac{2a}{3}\)
Suy ra \(a^2\ge\frac{2a}{3}-\frac{1}{9}\)
Thiết lập 2 BĐT còn lại tương tự và cộng theo vế:
\(P=a^2+b^2+c^2\ge\frac{2\left(a+b+c\right)}{3}-\frac{1}{9}=\frac{2}{3}-\frac{3}{9}=\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=\frac{1}{9}\Leftrightarrow a=b=c=\pm\frac{1}{3}\)
Vậy...
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
https://olm.vn/hoi-dap/detail/33622965541.html?pos=34266440529
Tham khảo này