Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab\right)\)
\(=a^2-ab+b^2+3ab\left(a+b\right)^2=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2=1\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+ab+b^2\right)+3a^3b+3ab^3+6a^2b^2\)
\(=a^2+ab+b^2+3ab\left(a^2+b^2+2ab\right)\)
\(=a^2+ab+b^2+3ab\left(a+b\right)^2\)
\(=a^2+2ab+b^2+2ab\)
\(= \left(a+b\right)^2+2ab=2ab\)
ta co
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b)
= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b )
_______thay a + b = 1 __________________:
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b²
M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1
Có: M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
=> M = (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)
=> M = (a + b)[(a + b)2 - 3ab] + 3ab[(a + b)2 - 2ab] + 6a2b2(a + b)
=> M = 1 - 3ab + 3ab(1 - 2ab) + 6a2b2 (vì a+b=1)
=> M = 1 - 3ab + 3ab - 6a2b2 + 6a2b2
=> M = 1
Vậy M = 1
Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
Thay \(a+b=1\)vào biểu thứ ta được:
\(M=1-3ab+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1+\left[-3ab+3ab\left(a^2+b^2\right)+6a^2b^2\right]\)
\(=1+3ab\left(-1+a^2+b^2+2ab\right)\)
\(=1+3ab\left(a^2+2ab+b^2-1\right)\)
\(=1+3ab\left[\left(a+b\right)^2-1\right]\)
Thay \(a+b=1\)vào biểu thức ta được:
\(M=1+3ab\left(1-1\right)=1+3ab.0=1\)
Vậy \(M=1\)
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]
M = a2 - ab + b2 + 3ab.(a2 + b2 + 2ab)
M = a2 - ab + b2 + 3ab.(a + b)2
M = a2 - ab + b2 + 3ab
M = a2 + b2 + 2ab
M = (a + b)2
M = 1
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)[\left(a+b\right)^2-3ab]+3ab[\left(a+b\right)^2-2ab+6a^2b^2\left(a+b\right)\)
\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
\(=1\)
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
M=\(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
=\(\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2b^2\left(a+b\right)+6a^2b^2\left(a+b\right)\)
=\(a^2-ab+b^2\)
=\(\left(a+b\right)^2-2ab-ab\)
=-3ab
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
\(M=a^3 +b^3+3ab(a^2+b^2)+6a^2.b^2(a+b) \)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[a^2+b^2+2ab\left(a+b\right)\right]\)
\(M=a^2-ab+b^2+3ab\left(a^2+b^2+2ab\right)\)
\(M=a^2-ab+b^2+3ab\left(a+b\right)^2\)
\(M=a^2-ab+b^2+3ab\)
\(M=a^2+b^2+2ab\)
\(M=\left(a+b\right)^2\)
\(M=1\)