K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Ta có: 

\(a^{2010}+b^{2010}+a^{2012}+b^{2012}\)

\(=\left(a^{2010}+a^{2012}\right)+\left(b^{2010}+b^{2012}\right)\ge2a^{2011}+2b^{2011}\)

Dấu = xảy ra khi: \(\hept{\begin{cases}a^{2010}=a^{2012}\\b^{2010}=b^{2012}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

\(\Rightarrow a^{2013}+b^{2013}=2\)

13 tháng 10 2017

giải cách nầy hợp lý hơn nè :

ta có: \(a^{2012}+b^{2012}=\left(a^{2011}+b^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\)   (1)

mà \(a^{2010}+b^{2010}=a^{2011}+b^{2011}=a^{2012}+b^{2012}\) nên

\(\left(1\right)\Leftrightarrow a^{2010}+b^{2010}=\left(a^{2010}+b^{2010}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\)

\(\Leftrightarrow\left(a^{2010}+b^{2010}\right)\left(1-a-b+ab\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a^{2010}+b^{2010}=0\\1-a-b+ab=0\end{cases}}\)

+) với \(a^{2010}+b^{2010}=0\)

mà a>0 ; b>0 => ko có giá trị của a;b

+) với  1-a-b+ab=0

\(\Rightarrow\left(1-a\right)-b\left(1-a\right)=0\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)=0\)  

\(\Leftrightarrow\orbr{\begin{cases}1-a=0\\1-b=0\end{cases}\Rightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}}\)

TH1: a=1=> b^2010 =b^2011 =>\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\)=> b=1 vì b>0

=> a^2013 +b^2013=2

TH2: b=1 => a^2010 +a^2011=>\(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)=> a=1 vì a>0

=> a^2013 +b^2013 =2

Vậy a^2013 +b^2013 =2

AH
Akai Haruma
Giáo viên
22 tháng 7 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của miumiucute - Toán lớp 9 | Học trực tuyến

21 tháng 9 2016

Có: \(a^3+b^3=c^3\Leftrightarrow\left(\frac{a}{c}\right)^3+\left(\frac{b}{c}\right)^3=1.\)
Đặt : \(\frac{a}{c}=x;\frac{b}{c}=y\). Suy ra \(0< x< 1;0< y< 1\).
Vì vậy: \(x^{2010}< x^3;y^{2010}< y^3.\)
Từ đó: \(x^{2010}+y^{2010}< x^3+y^3< 1\).
Suy ra: \(\left(\frac{a}{c}\right)^{2010}+\left(\frac{b}{c}\right)^{2010}< 1\)hay: \(a^{2010}+b^{2010}< c^{2010}.\)
 

21 tháng 9 2016

a^2010+b^2001<c^2010

19 tháng 6 2015

\(\Rightarrow x^{2014}+y^{2014}-2\left(x^{2013}+y^{2013}\right)+x^{2012}+y^{2012}=0\)

\(\Leftrightarrow x^{2012}.\left(x-1\right)^2+y^{2012}.\left(y-1\right)^2=0\)

\(\Rightarrow x=1;y=1\)

\(\Rightarrow P=2\)

9 tháng 4 2019

cai gi

4 tháng 7 2019

ĐẦU TIÊN TA BÌNH PHƯƠNG HAI PHƯƠNG TRÌNH ĐÃ CHO.

Ta có : (a - 3ab2)2 = a6 - 6a4b+ 9a2b4 .

               (b3 - 3a2b)= b- 6a2b4 + 9a4b.

Ta lại có : (a- 3ab2)2 + (b3 - 3a2b)2 = a6 + 3a4b + 3a2b4 + b6  .

             <=> 2332 + 2010= (a2 + b2).

          <=> a2 + b\(\sqrt[3]{233^2+2010^2}\).

           

6 tháng 10 2019

Sử dụng BDT Cauchy dễ dàng CM được: \(ab+bc+ac\le a^2+b^2+c^2=3\)

->\(a+b+c\ge3\)(1)

Tiếp  tục sử dụng BDT Cauchy CM được:\(a^2+b^2+c^2+3\ge2a+2b+2c\Leftrightarrow a^2+b^2+c^2=3\ge a+b+c\)(2)

Từ (1),(2) -> a+b+c=3. Dấu = xảy ra khi a=b=c=1. Thay vào ta tính được B=1

7 tháng 10 2019

a, b, c là số thực sao có thể sử dụng bất đẳng thức Cauchy đc???

Em tham khảo bài làm : Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath