K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

Ta có :  \(a+b=2\)

\(\Rightarrow\)\(a = 2 -b\)

\(A = 2a^2 +3b^2 +3ab\)

\(A = 2a^2 + 3b. (a+b)\)

\(A = 2. (2-b)^2+3b. (2-b+b)\)

\(A = 2. ( b^2 -4b+4)+6b\)

\(A = 2b^2 -8b+8+6b\)

\(A = 2b^2 -2b+8\)

\(A = 2. ( b ^2 -b+4)\)

\(A=2. (b^2 -2.b.{1\over2}+({1\over2})^2-({1\over2})^2+4)\)

\(A = 2. [ (b -{1\over2})^2-{15\over4}]\)

\(A =2. (b-{1\over2})^2 + {15\over2}\)\(\ge\)\({15\over2}\)

\(Min A ={15\over2}\)\(\Leftrightarrow\)\(a = {3\over2};b={1\over2}\)

Ta có : a+b=2→b=2−a

→P=2a2+3b2+3ab=2a2+3b(a+b)=2a2+3b.2=2a2+6b=2a2+6(2−a)=2a2−6a+12

→P=2(a2−3a)+12

→P=2(a2−2a.32+94)+152

→P=2(a−32)2+152≥152

→GTNNP=152

Dấu  = xảy ra khi a−32=0

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3

27 tháng 10 2020

Đề True ??

30 tháng 10 2020

lời giải của 1 bạn trên "Diễn đàn toán học" . mình trích nguyên bài làm của bạn ấy luôn nha

Giả định \(a=x;b=y;c=z\)

Áp dụng AM-GM ta có : 

\(2\left(a^3+a^3+x^3\right)\ge6xa^2\)

\(3\left(b^3+b^3+y^3\right)\ge9yb^2\)

\(4\left(c^3+c^3+z^3\right)\ge12zc^2\)

Cộng 3 bất đẳng thức trên lại theo vế ta được 

\(2P+2x^3+3y^3+4z^3\ge6xa^2+9yb^2+12zc^2\)

Ta tìm x,y,z thỏa mãn \(\hept{\begin{cases}\frac{6x}{1}=\frac{9y}{2}=\frac{12z}{3}\\x^2+2y^2+3z^2=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{6}{\sqrt{407}}\\y=\frac{8}{\sqrt{407}}\\z=\frac{9}{\sqrt{407}}\end{cases}}\)

\(\Rightarrow P\ge\frac{12}{\sqrt{407}}\)

Vậy \(P_{min}=\frac{12}{\sqrt{407}}\Leftrightarrow a=\frac{6}{\sqrt{407}};b=\frac{8}{\sqrt{407}};c=\frac{9}{\sqrt{407}}\) 

8 tháng 2 2023

Theo đề ra, ta có:

\(a^2+b^2+c^2\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Theo BĐT Cô-si:

\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)

Ta đặt \(a^2+b^2+c^2=k\)

Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

Vì thế nên \(k\ge\dfrac{1}{3}\)

Khi đấy:

\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)

\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).

2 tháng 8 2018

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

   \(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra <=>  \(a=1;\)\(b=2\)

Vậy MIN P = 11  Khi a = 1;   b = 2

2 tháng 8 2018

Bài này là BĐT cosi

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)

\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2

13 tháng 3 2017

9 nha ban