Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (4n + 3 )2 -25 = ( 4n+ 3 - 5 ) ( 4n + 3 + 5 ) = ( 4n - 2 ) ( 4n + 8 )
=> ( 4n - 2 ) ( 4n + 8 ) chia hết cho 8 với \(\forall n\)
=> (4n+3)2 - 25 chia hết cho 8 với mọi n
Bài 2: (2n + 3)2 - 9 = ( 2n + 3 + 3 ) ( 2n+3-3) = (2n+6) . 2n = 4n2 +6 chia hết cho 4 với \(\forall n\)
Vậy (2n+3)2 - 9 chia hết cho 4 với mọi n
Bài 3: m2 - n2 = ( m - n ) ( m + n )
b) -16 + (x-3)2 = (x-3)2 -16 = ( x - 3 -4 ) ( x-3+4 ) = (x - 7 ) ( x +1 )
A B C H I M N K
do từ câu b ta có MHNK là hình vuông từ đó ta có
MN là trung trực của KH (1)
mà ta có hai tam giác vuông IKB và IHB nên ta có \(PH=PK=\frac{1}{2}BI\)( đường trung tuyến ứng với cạnh huyền)
Do PH=PK nên P thuộc đường trung trực của KH (2)
từ (1) và (2) ta có P thuộc MN
chứng minh tương tự ta có
Q thuộc MN
do đó M,N,P,Q thẳng hàng
Đề thiếu \(0\le a,b,c\le\dfrac{4}{3}\)
\(b+c=2-a\)
\(bc=1-a\left(b+c\right)=1-a\left(2-a\right)=1-2a+a^2\)
Áp dụng BĐT \(\left(x+y\right)^2\ge4xy\), ta có
\(\left(2-a\right)^2\ge4\left(1-2a+a^2\right)\)
\(4-4a+a^2\ge4-8a+4a^2\)
\(4-4a+a^2-4+8a-4a^2\ge0\)
\(-3a^2+4a\ge0\)
\(3a^2-4a\le0\)
\(a\left(3a-4\right)\le0\)
\(\Rightarrow0\le a\le\dfrac{4}{3}\)
Tương tự với b,c
cảm ơn ạ!