Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với a = b thì a - b = 0
ở bước (a+b)(a-b)=b(a-b) sang bước suy ra a+b=b bn đã chia cả hai vế cho a-b=0 là không được
Vậy chỗ sai là không có phép chia cho 0 đâu nhé
P/s: Mk chưa học tới lớp 9, nếu sai mong bn thông cảm. :))
Ta có \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{\left(abc\right)^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{b^2c^2+c^2a^2+a^2b^2}{64}=\frac{3}{4}\)
\(\Leftrightarrow b^2c^2+c^2a^2+a^2b^2=\frac{3.64}{4}=48\)
Do đó \(T=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}=\frac{48}{8}=6\)
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.
Đề bài ko đúng bạn.
Với \(a=b=1\) thay vào \(\Rightarrow1+1\ge2\left(1+1\right)\Rightarrow2\ge4\) (sai)