Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác NMA và NMB có:
\(MA=MB\left(gt\right)\)
\(NM\) là cạnh chung.
\(NA=NB\) (đường tròn tâm A và B cùng bán kính cắt nhau)
\(\Rightarrow\Delta NMA=\Delta NMB\left(c.c.c\right)\) (1)
b) Vì \(\widehat{NMA}=\widehat{NMB}\) (từ 1) và 2 góc trên là 2 góc kề bù nên \(\widehat{NMA}=\widehat{NMB}=90^o\)
Vậy \(NM\perp AB\)
c) \(NA=NB\) (từ 1)
\(BM=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Chu vi tam giác NMB:
\(10+8+6=24\left(cm\right)\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+10>0\Leftrightarrow x>-10\\x-7>0\Leftrightarrow x>7\end{cases}}\\\hept{\begin{cases}x+10< 0\Leftrightarrow x< -10\\x-7< 0\Leftrightarrow x< 7\end{cases}}\end{cases}}\)
a)Vì M và N thuộc đường tròn tâm A bán kính AB
=> AM=AN=AB
Vì M và N thuộc đường tròn tâm B bán kính BA
=> BM=BN=BA
Vậy AM=AN=BM=BN=AB
Xét ∆AMB và ∆ANB
AM=AN
BM=BN
AB cạnh chung
Vậy ∆AMB=∆ANB(c.c.c)
b) Vì MA=MB nên M thuộc trung trực của AB
Vì NA=NB nên N thuộc trung trực của AB
Vậy MN là đường trung trung trực của AB.
Cách vẽ:
B1: Lần lượt lấy A và B làm tâm, ta quay hai cung tròn với bán kính R( Lưu ý R>1/2AB)
Hai cung tròn (A;r) và (B;r) cắt nhay tại hai điểm M và M'
b2: Nối MM' ta được đường trung trực MM' của đoạn thẳng AB.