Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (a + 3)(b - 4) - (a - 3)(b + 4) = 0
<=> (a+3)(b - 4) = (a-3)(b + 4)
<=> \(\frac{a+3}{b+4}=\frac{a-3}{b-4}\)(t/c tỉ lệ thức)
=> \(\frac{a+3}{b+4}=\frac{a-3}{b-4}=\frac{a+3+a-3}{b+4+b-4}=\frac{a+3-a+3}{b+4-b+4}\)
=> \(\frac{2a}{2b}=\frac{6}{8}\)
=> \(\frac{a}{b}=\frac{3}{4}\)
=> \(\frac{a}{3}=\frac{b}{4}\)
3.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\) và \(a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)
+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)
+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)
Vậy ...
3.
ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5
vì\(\dfrac{a}{2}\)=5=>a=2.5=10
\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15
\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20
vậy a=10,b=15,c=20
chúc bạn hok tốt
\(\left(a+3\right).\left(b-4\right)-\left(a-3\right).\left(b+4\right)=0\)
\(\Rightarrow\left(a+3\right).\left(b-4\right)=\left(a-3\right).\left(b+4\right)\)
\(\Rightarrow\frac{a-3}{a+3}=\frac{b-4}{b+4}\)
\(=>\frac{a}{a+3}-\frac{3}{a+3}=\frac{b}{b+4}-\frac{4}{b+4}\)
\(\frac{a}{a+3}=\frac{b}{b+4}\Rightarrow a.\left(b+4\right)=b.\left(a+3\right)\Rightarrow ab+4a=ab+3b\)
\(\Rightarrow4a=3b\Rightarrow\frac{a}{3}=\frac{b}{4}\left(đpcm\right)\)
Bài 4:
x + y = xy
<=> x + y - xy = 0
<=> x(1 - y) - (1 - y) = -1
<=> (x - 1)(1 - y) = -1
<=> (x - 1) & (1 - y) thuộc Ư(-1) = { -1; 1 }
Bạn tự chia trường hợp rồi làm, (x; y) = (0; 0) và (2; 2)
Bài 3: Mình thấy cái f(0) đó sao sao ấy ạ. Thay vào có chỗ là 03 mà hình như lũy thừa thì cơ số không được là 0 hay sao ấy ạ nên mình thắc mắc. (không biết là mình có nhầm không)
a) y = f(x) = -4x3 + x
<=> f(-0,5) = -4(-0,53) - 0,5 = 0
b) y = f(x) = -4x3 + x
<=> f(-a) = -4(-a3) - a = 4a3 - a (*)
Khi đó, f(a) = -4a3 + a <=> -f(a) = 4a3 - a (**)
Từ (*) & (**) <=> f(-a) = -f(a) (đpcm)
Bài 1:
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)
\(\Rightarrow\left(3x-y\right)4=\left(x+y\right)3\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=4y+3y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{7}{9}.\)
Vậy \(\dfrac{x}{y}=\dfrac{7}{9}.\)
Bài 1
Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow\left(3x-y\right)4=\left(x+y\right)3\)
\(\Leftrightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Leftrightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Bài 2 :
Ta có : 3x + 2y = y
=> 3x + y = 0
Lại có ; \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{6}=\frac{3x-3+y+3}{6+1}=\frac{3x+y}{6}=\frac{0}{6}=0\)
Nên \(\frac{x-1}{3}=0\Rightarrow x-1=0\Rightarrow x=1\)
\(y-3=0\Rightarrow y=3\)
\(\frac{z-3}{5}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy x = 1 , y = 3 , z = 3
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
\(\Leftrightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)
=>-4a+3b-4a+3b=0
=>-8a=-6b
=>4a=3b
hay a/3=b/4
Ta có :
\(\left(a+3\right)\left(b-4\right)\left(a-3\right)\left(b+4\right)=0\)
\(\Rightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)
\(\Rightarrow ab-4a+3b-12-ab+4a+3b+12=0\)
\(\Rightarrow6b-8a=0\)
\(\Rightarrow3b=4a\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}\)