K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)

=>-4a+3b-4a+3b=0

=>-8a=-6b

=>4a=3b

hay a/3=b/4

21 tháng 1 2022

Ta có :

\(\left(a+3\right)\left(b-4\right)\left(a-3\right)\left(b+4\right)=0\)

\(\Rightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\)

\(\Rightarrow ab-4a+3b-12-ab+4a+3b+12=0\)

\(\Rightarrow6b-8a=0\)

\(\Rightarrow3b=4a\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}\)

6 tháng 2 2020

Vì (a + 3)(b - 4) - (a - 3)(b + 4) = 0

<=> (a+3)(b - 4) = (a-3)(b + 4)

<=> \(\frac{a+3}{b+4}=\frac{a-3}{b-4}\)(t/c tỉ lệ thức)

=> \(\frac{a+3}{b+4}=\frac{a-3}{b-4}=\frac{a+3+a-3}{b+4+b-4}=\frac{a+3-a+3}{b+4-b+4}\)

=> \(\frac{2a}{2b}=\frac{6}{8}\)

=> \(\frac{a}{b}=\frac{3}{4}\)

=> \(\frac{a}{3}=\frac{b}{4}\)

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
25 tháng 10 2017

3.

Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\)\(a+2b-3c=-20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)

+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)

+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)

+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)

Vậy ...

25 tháng 10 2017

3.

ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5

\(\dfrac{a}{2}\)=5=>a=2.5=10

\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15

\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20

vậy a=10,b=15,c=20

chúc bạn hok tốt

31 tháng 10 2018

\(\left(a+3\right).\left(b-4\right)-\left(a-3\right).\left(b+4\right)=0\)

\(\Rightarrow\left(a+3\right).\left(b-4\right)=\left(a-3\right).\left(b+4\right)\)

\(\Rightarrow\frac{a-3}{a+3}=\frac{b-4}{b+4}\)

\(=>\frac{a}{a+3}-\frac{3}{a+3}=\frac{b}{b+4}-\frac{4}{b+4}\)

\(\frac{a}{a+3}=\frac{b}{b+4}\Rightarrow a.\left(b+4\right)=b.\left(a+3\right)\Rightarrow ab+4a=ab+3b\)

\(\Rightarrow4a=3b\Rightarrow\frac{a}{3}=\frac{b}{4}\left(đpcm\right)\)

20 tháng 3 2020

Bài 4:

x + y = xy

<=> x + y - xy = 0

<=> x(1 - y) - (1 - y) = -1

<=> (x - 1)(1 - y) = -1

<=> (x - 1) & (1 - y) thuộc Ư(-1) = { -1; 1 }

Bạn tự chia trường hợp rồi làm, (x; y) = (0; 0) và (2; 2)

Bài 3: Mình thấy cái f(0) đó sao sao ấy ạ. Thay vào có chỗ là 03 mà hình như lũy thừa thì cơ số không được là 0 hay sao ấy ạ nên mình thắc mắc. (không biết là mình có nhầm không)

a) y = f(x) = -4x3 + x

<=> f(-0,5) = -4(-0,53) - 0,5 = 0

b) y = f(x) = -4x3 + x

<=> f(-a) = -4(-a3) - a = 4a3 - a (*)

Khi đó, f(a) = -4a3 + a <=> -f(a) = 4a3 - a (**)

Từ (*) & (**) <=> f(-a) = -f(a) (đpcm)

6 tháng 7 2017

Bài 1:

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)

\(\Rightarrow\left(3x-y\right)4=\left(x+y\right)3\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=4y+3y\)

\(\Rightarrow9x=7y\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{7}{9}.\)

Vậy \(\dfrac{x}{y}=\dfrac{7}{9}.\)

7 tháng 7 2017

xử nốt đi :3

6 tháng 7 2017

Bài 1

Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow\left(3x-y\right)4=\left(x+y\right)3\)

\(\Leftrightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Leftrightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

6 tháng 7 2017

Bài 2 : 

Ta có : 3x + 2y = y

=> 3x + y = 0

Lại có ; \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{6}=\frac{3x-3+y+3}{6+1}=\frac{3x+y}{6}=\frac{0}{6}=0\)

Nên \(\frac{x-1}{3}=0\Rightarrow x-1=0\Rightarrow x=1\)

       \(y-3=0\Rightarrow y=3\)

         \(\frac{z-3}{5}=0\Rightarrow z-3=0\Rightarrow z=3\)

Vậy x = 1 , y = 3 , z = 3

27 tháng 7 2018

B2:

a/b=b/c=c/a=a+b+c/b+c+a=1

suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)

...................................................................................................

với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c

28 tháng 7 2018

Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha