Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
⇒3A=3(3+32+33+...+32015+32016)⇒3A=3(3+32+33+...+32015+32016)
⇒3A=32+33+34+...+32016+32017⇒3A=32+33+34+...+32016+32017
⇒3A−A=(32+33+...+32017)−(3+32+...+32016)⇒3A−A=(32+33+...+32017)−(3+32+...+32016)
⇒2A=32017−3⇒A=32017−32⇒2A=32017−3⇒A=32017−32
Vậy A=32017−32A=32017−32
b) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
=(3+32+33+34)+...+(32013+32014+32015+32016)=(3+32+33+34)+...+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40=40(3+...+32013)=3.40+...+32013.40=40(3+...+32013)
Vậy A có chữ số tận cùng là 0
c) Dễ thấy:
AA chia hết cho 33
AA không chia hết cho 3232
Mà 33 là số nguyên tố
Nên A không là số chính phương
Ta có: A = \(3+3^2+3^3+...+3^{2015}+3^{2016}\)
a) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-3\)
\(2A=3^{2017}-3\)
Suy ra \(A=\frac{3^{2017}-3}{2}\)
b) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-1\)
\(2A=3^{2017}-1\)
Sau đó bạn tự giải tiếp phần b)
c) Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}⋮3\Rightarrow A⋮3\)
Mà \(3⋮̸3^2\). Suy ra A không chia hết cho 32
Ta lại có: A chia hết cho 3 nhưng không chia hết cho 32
Vì thế A không phải là số chính phương
tính 3A
XONG LẤY 3A-A
LÀ RA
LM ĐC MÀ MIK K CÓ THỜI GIAN NÊN CHỈ GIÚP BN ĐC THẾ
A= 3 + 32 + 33 + ... + 32016
3A= 32 + 33 + ... + 32016 + 32017
3a-a= 32017 - 3
2a= 32017 - 3
a= (32017 - 3) : 2
a, 3A = 32 + 33 + 34 +...+ 32016 + 32017
3A - A = 2A = ( 32+ 33 + 34 +...+ 32016 + 32017) - (3+ 32 + 33 +...+ 32015 + 32016)
2A = 32+ 33 + 34 +...+ 32016 + 32017 - 3- 32 - 33 -...- 32015 - 32016
2A = 32017 - 3
2A = 3(32016 - 1)
A = 1,5 ( 32016 -1)
Mình không chắc câu c) ,do dạng này mới học.
a) \(3A=3^2+3^3+3^4+...+3^{2017}\)
\(3A-A=2A=3^{2017}-3\Rightarrow A=\frac{3^{2017}-3}{2}\)
b)Ta có: \(3^{2017}=3^{4.504+1}=3^{4k+1}=\left(...3\right)\)
Nên A tận cùng là: \(\frac{\left(...3\right)-3}{2}=\frac{\left(..0\right)}{2}=..0\)
c) \(A=\frac{3^{2017}-3}{2}=\frac{3}{2}\left(3^{2016}-1\right)\)
Nên A là số chính phương thì \(3^{2016}-1=\frac{3}{2}k^2\)
Khi đó \(A=\frac{9}{4}k^2\Rightarrow k^2=\frac{3^{2017}-3}{2}:\frac{9}{4}=\frac{4\left(3^{2017}-3\right)}{18}\)
Do 18 không phải là số chính phương nên A không phải là số chính phương (do quy tắc \(\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}\)khi đó để A là số chính phương thì cả tử và mẫu đề là số chính phương,ta chỉ cần xét 1 trong 2.)
Ta có: A = 3 +32 +33 +...+32015+32016
A = 3+ 32 + 32.3 + 32.32+ ...+32.32013 + 32.32014
A = 3+ 32(3+32+33+...+32013+32014)
Ta thấy: một số chính phương chia hết cho 3 thì phải chia hết cho 32
Xét tổng A ta có: 3 không chia hết cho 32
32(3+32+33+...+32013+32014) chia hết cho 32
\(\Rightarrow\)A không chia hết cho 32 mà A chia hết cho 3 nên A không là số chính phương
Mình làm tắt xíu mong bạn làm được nha
=>A=3 + 32(3+32+...+32014)=3+9B
Vì A chia hết cho 3 nhưng A chia 9 dư 3
=> A không là số chính phương
TA CÓ 3A=3^2+3^3+3^4+......+3^2017
3A-A=3^2017-3
A=(3^2017-3)/2
CHẮC CHẮN MÌNH ĐÃ HỎI CÁC THẦY CÔ RỒI
CHẮC CHẮN 100%
Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x
2c)
Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)
\(\Rightarrow\left(x-2012\right)^2\le3\)
\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)
Vậy x=2012,y=5
1)x2 +2x=0
=>x(x+2)=0
Xét x=0 hoặc x+2=0
x=-2
Vậy x=0 hoặc x=-2
2)x2 +2x-3=0
=x2 -1x+3x-3=0
=x(x-1)+3(x-1)=0
=(x-1)(x-3)=0
Xét x-1=0 hoặc x-3=0
x=1 x=3
Tự KL nha
a, 3A=3^2+3^3+3^4+...+3^2016+3^2017
2A=3A-A=3^2017-3
A=3^2017-3/2
a.
A=3+32+33+...+32015+32016
3A = 32+33+...+32016+32017
3A - A = (32+33+...+32016+32017 ) - (3+32+33+...+32015+32016 )
2A = 32017 - 3
A = \(\frac{\text{ }3^{2017}-3}{2}\) \(\frac{\text{3^{2017} - 3}}{2}\)