Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`a.` Có `A(3;1),B(4;2)`
\(\Rightarrow\hept{\begin{cases}\overrightarrow{OA}=\left(3;1\right)\\\overrightarrow{BA}=\left(x_A-x_B,y_A-y_B\right)=\left(-1;-1\right)\end{cases}}\)
`b.` Có \(\overrightarrow{OB}=\left(4;2\right)\)
\(\Rightarrow\overrightarrow{OA}.\overrightarrow{OB}=3.4+1.2=14\ne0\)
Vậy `OA` không vuông góc `OB`
a: vecto AB=(-7;1)
vecto AC=(1;-3)
vecto BC=(8;-4)
b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)
a) D nằm trên trục Ox nên tọa độ của D là (x; 0).
Ta có :
DA2 = (1 – x)2 + 32
DB2 = (4 – x)2 + 22
DA = DB => DA2 = DB2
<=> (1 – x)2 + 9 = (4 – x)2 + 4
<=> 6x = 10
=> x = => D(; 0)
b)
OA2 = 12 + 32 =10 => OA = √10
OB2 = 42 + 22 =20 => OA = √20
AB2 = (4 – 1)2 + (2 – 3)2 = 10 => AB = √10
Chu vi tam giác OAB: √10 + √10 + √20 = (2 + √2)√10.
c) Ta có = (1; 3)
= (3; -1)
1.3 + 3.(-1) = 0 => . = 0 => ⊥
SOAB = || .|| => SOAB =5 (dvdt)
Giải:
a) D nằm trên trục \(Ox\) nên tọa độ của D là \((x; 0).\)
Ta có :
\(DA^2 = (1 - x)^2+ 3^2\)
\(DB^2 = (4 - x)^2+ 2^2\)
\(DA = DB \)
\(\Rightarrow DA^2 = DB^2\)
\(\Leftrightarrow(1-x)^2+9=(4-x)^2+4\)
\(\Leftrightarrow6x = 10\)
\(\Rightarrow x=\dfrac{5}{3}\)
\(\Rightarrow D\)\(\left(\dfrac{5}{3};0\right)\)
b) Ta có:
\(\overrightarrow{OA}= (1; 3)\)
\(\overrightarrow{AP}=\left(3;-1\right)\)
\(1.3 + 3.(-1) = 0 \)
\(\Rightarrow\overrightarrow{OA}=\overrightarrow{OB}=0\)
\(\Rightarrow\overrightarrow{OA}\perp\overrightarrow{AB}\)
SOAB = || .|| => SOAB =5 (dvdt)
a) D nằm trên trục Ox nên tọa độ của D là (x; 0).
Ta có :
DA2 = (1 - x)2 + 32
DB2 = (4 - x)2 + 22
DA = DB => DA2 = DB2
<=> (1 - x)2 + 9 = (4 - x)2 + 4
<=> 6x = 10
=> x = => D(; 0)
c) Ta có = (1; 3)
= (3; -1)
1.3 + 3.(-1) = 0 => . = 0 => ⊥
SOAB = || .|| => SOAB =5 (dvdt)
\(\overrightarrow{OA}-\overrightarrow{OB}\)
\(\overrightarrow{OA}\left(x_A-x_O;y_A-y_O\right)=\left(2;3\right)\)
\(\overrightarrow{OB}=\left(x_B-x_O;y_B-y_O\right)=\left(4;-1\right)\)
\(\Rightarrow\overrightarrow{OA}-\overrightarrow{OB}=\left(2-4;3+1\right)=\left(-2;4\right)\)
\(\overrightarrow{OA}=\left(2;3\right)\) ; \(\overrightarrow{OB}=\left(4;-1\right)\)
\(\Rightarrow\overrightarrow{OA}-\overrightarrow{OB}=\left(2-4;3+1\right)=\left(-2;4\right)\)
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)
Gọi M(x;y)
Ta có : \(\overrightarrow{AB}\)= (3;-2) và \(\overrightarrow{MA}\) =( -x; 3-y)
Theo bài: \(\overrightarrow{AB}\) =-2\(\overrightarrow{MA}\) <---->(3;-2) = -2( -x;3-y)
<----> \(\left\{\begin{matrix}3=-2x\\-2=-6+2y\end{matrix}\right.\)
Gỉai ra được x= -3/2 và y= 2 . Suy ra M (-3/2;2)