Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
\(A=3^{30}-1\)
Mà \(30^{30}-1< 3^{30}\Leftrightarrow A< B\)
85= (23)5= 215
337=315.322
Vì 215<315 => 315. 322 hay 85<337
Các phần còn lại làm theo như này!!!!
b) Ta có B=16.18.20.22
= (2^4). (2.3^2).( 2^2.5) (2.11)
= 2^8.5.3^2.11
ta có A=19^4 < 20^4= (2^2.5)^4=2^8.5
Dễ thấy B>A
a)Ta có: \(5^{36}=5^{3.12}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=11^{2.12}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125>121\Rightarrow125^{12}>121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
b) Ta có: \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(20< 21\Rightarrow5^{20}< 5^{21}\)
\(\Rightarrow625^5< 125^7\)
c) Ta có: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
Vì \(9>8\Rightarrow9^n>8^n\)( do \(n>0\))
\(\Rightarrow3^{2n}>2^{3n}\)
d)Ta có: \(5^{23}=5.5^{22}< 6.5^{22}\)
\(\Rightarrow5^{23}< 6.5^{22}\)
a. 5^36=(5^3)^12
=125^12
11^24=(11^2)^12
= 121^12
Vì 125^12>121^12 nên 5^36>11^24
b. Ta có: 625^5 =(5^4)^5
= 5^20
125^7=(5^3)^7
= 5^21
Vì 5^20<5^21 nên 625^5<125^7
Ta có A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2 + 22 + 23 + 24 + ... + 2101
Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
=> A = 2101 - 1
Vì 2101 - 1 < 2101
=> A < B
Vậy A < B
A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101
=> A = 2A - A
= 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100
= 2101 - 1 < 2101
=> A < B
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
Ta có : 3200 = (32)100 = 9100
2300 = ( 23 )100 = 8100
Vì 8<9 => 3200 .>2300
Cho A = 1/32 + 1/33 + 1/34 + ... + 1/39
=>3A=1/3+1/32+1/33+...+1/38
=>3A-A=1/3+1/32+1/33+...+1/38-1/32-1/33-1/34-...-1/39
=>2A=1/3-1/39
=>\(A=\frac{\frac{1}{3}-\frac{1}{3^9}}{2}\)<1
Vậy A<1
\(A=1+3^2+3^3+...+3^{29}\)
\(3A=1+\left(3^2+3^3+...+3^{29}\right).3\)
\(3A=1+3^3+3^4+...+3^{30}\)
\(3A-A=1+\left(3^3+3^4+...+3^{30}\right)-\)\(\left(3^2+3^3+...+3^{29}\right)\)
\(2A=1+3^{30}-1\)
\(\Rightarrow2A=3^{30}\)
\(\Rightarrow A=3^{30}:2\)
Vì\(3^{30}:2< 3^{30}\Rightarrow A< B\)
MK KHÔNG BIẾT ĐÚNG HAY SAI NHA !!!
A > B bạn nhé