Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có 3A= 3+3^2+...+3^31
Vậy 3A-A=2A= 3-1-3 +3^31=> A=\(\frac{3^{31}-1}{2}\)
b. A=(3.3^30-1)/2= (3.27^10-1)/2= [3.(27^2)^5-1]/2 = \(\frac{3x729^5-1}{2}\)
Ta co \(729^5\) có số cuối là 9 => 3.\(729^5\)có số cuối là 7, -1 đi có số cuối là 6, chia 2 có số cuối là 3
Vậy A có số cuối là 3 => A không thể là 1 số chính phương
c. A-1= 3+ 3^2+3^3+3^4+3^5+3^6+....+3^25+3^26+3^27+3^28+3^29+3^30
(Từ 3 đến 3^30 có 30 số, chia làm 6 nhóm)
=3(1+3+9+27+81+243) + 3^6 (1+3+..+243) +....+ 3^24(1+3+...+243)
=364 (3+3^6+...+3^24) Ta có 364 chia hết 7 vậy (A-1) chia hết 7
Bài 1:
Gọi số phải tìm là a ( a ϵ N*)
Ta có: a+42 chia hết cho 130 và 150
=> a + 42 ϵ BC(130;135)
=> a= 1908; 3858; 5808; 7758; 9708
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
S=1+31+32+33+...+330
3S=3+3^2+3^3+...+3^{31}3S=3+32+33+...+331
3S-S=3^{31}-13S−S=331−1
2S=3^{4.7+3}-12S=34.7+3−1
2S=81^7.27-12S=817.27−1
2S=\overline{......1}.27-12S=......1.27−1
2S=\overline{......7}-1=\overline{......6}2S=......7−1=......6
S=\overline{........3}S=........3
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^
a.
A = 5 + 5^2 + 5^3 +...+5^100
5A = 5^2 + 5^3 +...+5^101
4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]
A = \(\frac{5^{101}-5}{4}\)
b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5
=> A là hợp số
c,
A = 5 + 5^2 + 5^3 +... + 5^100
A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]
A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]
A = 30 + 5^2.30 + ... + 5^98 . 30
=> A chia hết cho 30
d.
Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]
Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]
=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]
Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng
Mà A chỉ có 4 chữ số 0
=> A không phải số chính phương
Ủng hộ mik nếu thấy OK Nha mấy bạn >..<
a,
A = 2 + 22 + 23 +...+210
A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )
A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)
A = 2 .3 + 23 .3 + ...+29.3
A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3
Vậy A \(⋮\) 3
b, A = 2 + 22 + 23 +...+210
A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )
A = 2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)
A = 2 . 31 + 26 .31
A = 31(2+26 ) \(⋮\) 31
vậy A \(⋮\) 31
d , A = 2 + 22 + 23 +...+210