Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề : CMR \(A=1^{19}+1^{18}+...+1^1+1\)
A = 1 + 1 + ... + 1 + 1 ( 20 số hạng )
A = 20 chia hết cho 5 => A chia hết cho 5 ( đpcm )
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
M=1+3+3^2+3^3+^3+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=13+3^3(1+3+3^2)+...+3^117(1+3+3^2)
=13+3^3.13+..+3^117.13
=13(1+3^3+...+3^117) chia hết cho 13
Vậy Mchia hết cho 13
ai chơi truy kích thì kết bạn vs mình nha
rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
a)\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.1-2^n.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)\)nên chia hết cho 10
b)\(9^{120}+9^{119}-9^{118}=9^{118}\left(9^2+9-1\right)=9^{118}.89\)
Suy ra chia hết cho 89
c)\(2^{100}+2^{99}+..+2+1=2^{99}\left(2+1\right)+...+\left(2+1\right)\)
\(=2^{99}.3+2^{97}.3+...+3=3\left(2^{99}+2^{97}+...+1\right)\)nên chia hết cho 3
A = 3 + 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120
3A = 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 + 3121
3A - A = ( 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 + 3121 ) - ( 3 + 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 )
2A = 3121 - 3
A = ( 3121 - 3 ) : 2 chia hết cho 2
Vậy A chia hết cho 2
A = 3 +32+33+34+35+36+...+3117+3118+3119+3120
A = (3+32) + (33+34) + (35+36)+ ...+ (3177+3118) + (3119+3120)
A= 3 . (1+3) + 33(1+3 )+ 37 ( 1+3 ) +...+3117 ( 1+3 ) + 3119 ( 1+3 )
A=3. 4 + 33 . 4 + 35 . 4 + ...+ 3119 . 4
A =4. ( 3+33 + 35 + ... + 3119 ) ⋮ 2
( vì trong tích trên có thừa số 4 , mà trong tích nếu có bất kì số nào đó chia hết cho a thì tích đó chia hết cho a . Vậy tích trên có chữ số 4 vì vậy tích đó chia hết cho 2 )
òi cậu viết sai hết đề thế này mk bt cậu nên làm hộ vậy!
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5