K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Mình thấy đề này bị sai nhé bạn . 
Trong ngoặc khi quy đồng rút gọn thì ở mẫu vẫn sẽ có nhân tử 97 là số nguyên tố,  Mà 2014^2015 không chia hết cho 97 

=> A không là số nguyên

Mình sửa đề thành :

\(A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{98}\right)\cdot98!\\ =2\cdot3\cdot...\cdot98+1\cdot3\cdot...\cdot98+...+1\cdot2\cdot...\cdot96\cdot98+1\cdot2\cdot...\cdot97\\ =\left(2\cdot3\cdot...\cdot98+1\cdot2\cdot...\cdot97\right)+\left(1\cdot3\cdot...\cdot98+1\cdot2\cdot...96\cdot98\right)+...\\ =2\cdot3\cdot...\cdot97\cdot\left(1+98\right)+1\cdot3\cdot4\cdot...\cdot96\cdot98\cdot\left(2+97\right)+...=99\left(2\cdot3\cdot...\cdot97+1\cdot3\cdot4...\cdot96\cdot98\right).chia.het.cho.11\)

9 tháng 4 2021

Cảm ơn bạn

23 tháng 3 2016

Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối

ta được :

( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )

= 99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ là k1, k2, k3, ..., k49 thì

A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49)  x 2.3.4....97.98

= 99.(k1+k2+...+k49)

=> A chia hết cho 49               (1)

b) 

Cộng 96 p/s theo từng cặp :

a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)

.................................................. ( làm tiếp nhé )

mỏi woa

1 tháng 4 2017

Thùy Trang giỏi quá!!!

23 tháng 2 2019

Ta thấy 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)

=> A là số dương 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99 

b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)

Ta sẽ có:

B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)

=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)

Bạn CMTT như câu a là cũng ra

Chúc bạn học tốt

Cảm ơn bạn.Bạn cho mk kb vs bạn nhé.

18 tháng 6 2015

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

18 tháng 6 2015

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

Câu 1 : Với giá trị nào của y thì biểu thức : A=|y-2014|+2015 có GTNN Tình GTNN của A Câu 2 : \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}\right).2014^{2015}\)CTR : A chia hết cho 11                                                                             Giải : Câu 1 : Ta có : |y-2014| \(\ge\) 0=> A = |y-2015| + 2015 \(\ge\) 2015A đạt GTNN = 2015 khi |y-2014|=0                     ...
Đọc tiếp

Câu 1 : Với giá trị nào của y thì biểu thức : 

A=|y-2014|+2015 có GTNN 

Tình GTNN của A 

Câu 2 : \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}\right).2014^{2015}\)

CTR : A chia hết cho 11 

                                                                            Giải : 

Câu 1 : 

Ta có : |y-2014| \(\ge\) 0

=> A = |y-2015| + 2015 \(\ge\) 2015

A đạt GTNN = 2015 khi |y-2014|=0

                                   y-2014=0

                                           y=2014

Câu 2 : Ta có : 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}\right)\)\(.2014^{2015}\) chia hết cho 11 

    \(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49+50}\right)\)

    \(=\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}\)

   \(=99.\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)

   \(=11.9.\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)

=> A chia hết cho 11 

1
30 tháng 3 2016

Đề này đc trích từ đề thi hsg cấp huyện/quận năm 2014-2015

Các bạn nhớ và ủng họ mình nhé

Thân ái !!!

20 tháng 12 2016

 Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]

= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )

= 1x1008 = 1008

Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )

\(=\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13\left(1+...+3^{96}\right)⋮13\)

10 tháng 11 2021

trl quá lâu